欢迎登录材料期刊网

材料期刊网

高级检索

以钛酸四丁酯为钛源, 以一种水性凝胶剂, 3-{[(2S)-2-(十八酰胺基)-3-苯丙基]酰胺基}丁羧酸四乙胺盐(简记为TC18PheBu)在水溶液中自组装形成的聚集体为模板, 经溶胶-凝胶缩聚、煅烧得到一种项链状 TiO2纳米颗粒. FE-SEM分析表明所制得的项链状TiO2纳米颗粒直径约为200~400nm. 采用FT-IR技术探讨了TiO2纳米颗粒形成机理, 即在钛酸四丁酯水解形成的带负电的低聚物与TC18PheBu中季铵盐正离子之间, 通过静电相互作用自组装形成纳米颗粒. XRD图谱表明TiO2纳米颗粒为锐钛矿晶型二氧化钛.

The necklace-like TiO2 nanoparticles were prepared by a sol-gel polymerization and subsequent calcinations. The aggregates of hydrogelator, tetraethylammonium 3-{[(2S)-2-(octadecylamino)-3-phenylpropanoyl] amino} butyrate (abbreviated as TC18PheBu) in aqueous solution were used as the templates and tetrabutyl titanate (Ti(OBu)4) was used as the source of titanium in the preparation of necklace-like TiO2 nanoparticles. The images of FE-SEM indicated that the average diameters of TiO2 nanoparticles were in the range of 200--400nm. The formation mechanism of necklace-like TiO2 nanoparticles was discussed
by FT-IR analysis, which indicated that the necklace-like TiO2 nanoparticles were formed through the electrostatic interaction between positive charged TC18PheBu and negative charged oligomers formed by the hydrolysis of Ti(OBu)4. The XRD analysis indicated that the TiO2 nanoparticles were in the form of anatase crystals.

参考文献

[1] Liu P, Lee S H, Tracy C E, et al. Adv. Mater., 2002, 14 (1): 27--30.
[2] 徐伏秋, 熊 飞, 张秋芬, 等(XU Fu-Qiu, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 163--166.
[3] 刘芹芹, 杨 娟, 孙秀娟, 等(LIU Qin-Qin, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (1): 70--74.
[4] Hoffmann S T, Martin W, Choi D Bahnermann. Chem. Rev., 1995, 95 (1): 69--96.
[5] 周武艺, 唐绍裘, 张世英, 等(ZHOU Wu-Yi, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 587--592.
[6] Imai H, Takahashi N, Tamura R, et al. Langmuir, 2001, 17 (1): 17--20.
[7] 邱健全, 赵 翔, 金敏超, 等(QIU Jian-Quan, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (3): 558--564.
[8] Caruso R A, Susha A, Caruso F. Chem. Mater., 2001, 13 (2): 400--409.
[9] Jung J H, Ono Y, Shinkai S. Angew. Chem., Int. Ed., 2000, 39 (10): 1862--1865.
[10] Jung J H, Ono Y, Hanabusa K, et al. J. Am. Chem. Soc., 2000, 122 (20): 5008--5009.
[11] Ono Y, Kanekiyo Y, Inoue K, et al. Chem. Lett., 1999, 32 (9): 475--479.
[12] Van Bommel K J C, Jung J H, Shinkai S. Adv. Mater., 2001, 13 (19): 1472--1476.
[13] Jung J H, Kobayashi H, van Bommel J C K, et al. Chem. Mater., 2002, 14 (4): 1445--1447.
[14] Chang X L, Wang L, Yang Y J, et al. Mater. Chem. Phys., 2006, 99 (1): 61--65.
[15] Yang Y G, Suzuki M, Fukui H, et al. Chem. Mater., 2006, 18 (5): 1324--1329.
[16] Fu Xinjian, Wang Ningxia, Zhang Shengzu, et al. Journal of Colloid and Interface Science, 2007, 315 (1): 376--381.
[17] Brinker C J, Scherer G W. Sol-Gel Science. Academic Press: San Diego, 1990. 360--362.
[18] Terech P, Weiss R G. Chem. Rev., 1997, 97 (8): 3133--3160.
[19] Van Esch J, Schoonbeek F, de Loos M, et al. Chem. Eur. J., 1999, 5 (3): 937--950.
[20] Tan C H, Zhu Y L, Lu R, et al. Mater. Chem. Phys., 2005, 91 (1): 44--47.
[21] Van Bommel K J C, Shinkai S. Langmiur, 2002, 18 (12): 4544--4548.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%