将活性炭负载与N掺杂有效结合, 采用酸催化水解法在粉状活性炭(AC)表面合成TiO2前驱体, 在NH3/N2气氛中程序升温处理制得N掺杂TiO2-xNy/AC(TON/AC)光催化剂. 以苯酚为模型物, 考查了TON/AC紫外光区、可见光区及太阳光下催化活性以及分离性能、使用寿命. 采用XPS、XRD、DRS、FTIR、SEM、低温氮物理吸附对光催化剂的表面特征、吸光特性、晶相结构等进行表征. 结果表明, N以阴离子形式进入TiO2体相并置换晶格中的O, 适量N掺杂的TON/AC在紫外光区、可见光区及太阳光下均表现出较高的活性. N掺杂在TiO2表面生成Ti--O--N键, 形成新的能级结构, 使催化剂的吸收红移至450~550nm, 诱发TiO2可见光催化活性. AC负载可降低TiO2团聚体的尺寸, 增加催化剂比表面积, 为光催化降解提供高浓度环境, 从而提高光催化效率同时还可改善催化剂分离性能, 提高催化剂使用寿命.
An efficient visible-light response composite photocatalyst TiO2-xNy/AC was prepared by calcination of the mixture of TiO2 precursor made by acid catalyzed hydrolysis method and actived carbon (AC) in NH3 /N2 atmosphere. Photocatalytic activity was investigated through the photocatalytic degradation of phenol. The separability of TON/AC was determined by gravity
sedimentation. X-ray photoelectron spectroscope, X-ray diffraction, diffuse reflectance spectroscope, Fourier transform infrared spectroscope, scanning electron microscope and N2 adsorption isotherm were used for catalyst characterization. The results show that anion N is incorporated into TiO2 lattice and substitutes part of O. TON/AC with suitable N-doping
exhibits high activity under ultraviolet light, visible light and solar light irradiation. Also, TON/AC exhibits better decantability and less deactivation. Doped-N can form a new band gap above the valence band of TiO2 which can extend the adsorption edge to 450--550nm. In addition, Actived carbon support is beneficial to the high dispersion and large surface area of N-doped TiO2.
参考文献
[1] | Yu J G, Zhou M H, Cheng B, et al. J. Mol. Catal. A: Chem. 2006, 246 (1-2): 176--184. [2] Wawrzyniak B, Morawski A W. Appl. Catal. B: Environ., 2005, 62 (1-2): 150--158. [3] Herrmann J M, Matos J, Disdier J, et al. Catal. Today, 1999, 54 (2): 255--265. [4] Torimoto T, Okawal Y. J. Photochem. Photobio. A: Chem., 1997, 103 (1-2): 219--227. [5] 刘守新, 陈孝云, 陈曦(LIU Shou-Xin, et al). 催化学报(Chin. J. Catal.), 2006, 27 (8): 697--702. [6] 程萍, 顾明元, 金燕苹(CHEN Ping, et al). 化学进展(Chemistry Progress), 2005, 17 (1): 8--14. [7] Yu J C, Yu J, Zhao J. Appl. Catal. B: Environ., 2002, 36 (1): 31--43 [8] Ingaki M, Hirose Y, Matsunaga T. Carbon., 2003, 41 (13): 2619--2627. [9] Nyrne J A, Eggins N R, Nrown N M D, et al. Appl. Catal. Environ., 1998, 17 (1-2): 25--36. [10] Li D, Haneda H, Hishita S, et al. Mater. Sci. Eng. B: 2005, 117 (1): 67--75. [11] Ao C H, Lee S C. J. Photochem. Photobio. A: Chem., 2004, 161 (2-3): 131--140. [12] Ashia R, Ohwaki T, Ohwak K, et al. Science, 2001, 293 (5528): 269--271. [13] Sato S. Chem. Phys. Lett., 1986, 123 (1-2): 126--128. [14] Saha N C, Tompkins H G. J. Appl. Phys., 1992, 72 (7): 3072--3079. [15] 陈孝云, 刘守新(CHEN Xiao-Yun, et al). 物理化学学报(Acta. Phys. Chim. Sin.), 2007, 23 (5): 701--708. [16] 陈孝云, 刘守新, 陈曦, 等(CHEN Xiao-Yun, et al). 物理化学学报(Acta. Phys. Chim. Sin.), 2006, 22 (5): 517--522. [17] Torimoto T, Okawal Y. J. Photochem. Photobio. A: Chem., 1997, 103 (1-2): 153--157. [18] Ao C H, Lee S C. Appl. Catal. B: Environ., 2003, 44 (3): 191--205. [19] Lee D K, Kim S C, Cho I C, et al. Sep. Purif. Technol., 2004, 34 (1-3): 59--66. [20] 李佑稷, 李效东, 李君文, 等(LI You-Ji, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 291--298. [21] Tryba B, Morawski A W, Inagaki M. Appl. Catal. B: Environ., 2003, 46 (1): 203--208. [22] 陈孝云, 刘守新, 陈曦(CHEN Xiao-Yun, et al), 应用化学(Chin. J. Appl. Chem.), 2006, 23 (11): 1218--1222. [23] Liu S X, Chen X Y, Chen X. Chin. Chem. Lett., 2006, 17 (4): 529--532. [24] Li Di, Ohashi N, Hishita S, et al. J. Solid State Chem., 2005, 178 (11): 3293--3302. [25] Khan S U M, Al-Shahry M, Ingter J W B. Science, 2002, 279 (27): 2243--2249. [26] Zhang X, Zhang F, Chan K Y. Appl. Catal. A: General., 2005, 284 (1-2): 193--198. [27] Yang J, Bai H Z, Tan X C, et al. Appl. Surf. Science, 2006, 253 (4): 1988--1994. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%