高粱经高温热解转化为碳模板, 再经液相渗透技术与熔融硅反应, 生成具有高粱微观结构的多孔SiC材料. 采用XRD、SEM和压汞技术对样品的物相、微观结构以及孔分布进行了研究. 结果表明, 最终的产物主要由β-SiC组成, 且很好地复制了碳模板的微观结构. SiC的平均孔径和孔隙率分别为91.4μm和76.6%, 与碳模板的88.5μm和71.2%相似. SiC的比表面积为33.7m2/g, 与碳模板的比表面积59.4m2/g相比明显降低. 二者相近的表面分维数(SiC为2.73, 碳模板为2.70)也表明SiC很好地保持了碳模板的微观结构. 高粱转化的SiC具有颗粒直径大、孔隙率高等特点.
Durra was firstly transformed into carbon template by high-temperature pyrolysis and then converted into biomorphic SiC by infiltration of liquid Si in Ar atmosphere at 1600℃. The purified SiC sample was characterized by X-ray diffraction, scanning electron microscope and mercury intrusion. The results suggest that the sample mainly consist of β-SiC and perfectly replicate the microstructure and morphology of the carbon template. The durra-derived SiC has a mean pore diameter of 91.4μm and porosity of 76.6%, and both of them are similar to those of the carbon template, 88.5 μm and 71.2%, respectively. The specific surface area of SiC is 33.7m2/g, which is less than that of the carbon template, 59.4m2/g. The surface fractal dimension is 2.73 for the SiC sample and 2.70 for the template by analyzing the mercury intrusion data. The durra-derived SiC has characteristics of large grain size and high porosity.
参考文献
[1] | Greil P. J. Eur. Ceram. Soc., 2001, 21 (2): 105--118. [2] Sieber H, Hoffmann C, Kaindl A, et al. Adv. Eng. Mater., 2000, 2 (3): 105--109. [3] Sieber H. Mater. Sci. Eng. A, 2005, 412 (1-2): 43--47. [4] Rambo C R, Cao J, Rusina O, et al. Carbon, 2005, 43 (6): 1174--1183. [5] Rambo C R, Cao J, Sieber H. Mater. Chem. Phys., 2004, 87 (2-3): 345--352. [6] Streitwieser D A, Popovska N, Gerhard H, et al. J. Eur. Ceram. Soc., 2005, 25 (6): 817--828. [7] Zollfrank C, Kladny R, Sieber H, et al. J. Eur. Ceram. Soc., 2004, 24 (2): 479--487. [8] Cao J, Rambo C R, Sieber H. Ceram. Int., 2004, 30 (7): 1967--1970. [9] Qian J M, Wang J P, Qiao G J. J. Eur. Ceram. Soc., 2004, 24 (10-11): 3251--3259. [10] Zollfrank C, Sieber H. J. Eur. Ceram. Soc., 2004, 24 (2): 495--506. [11] 张涛, 张兆泉, 张景贤, 等(ZHANG Tao, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (3): 489--492. [12] Greil P, Lifka T, Kaindl A. J. Eur. Ceram. Soc., 1998, 18 (14): 1961--1973. [13] Fey T, Sieber H, Greil P. J. Eur. Ceram. Soc., 2005, 25 (7): 1015--1024. [14] Wang Q, Jin G Q, Wang D H, et al. Mater. Sci. Eng. A, 2007, 459 (1-2): 1--6. [15] Hao Y J, Jin G Q, Han X D, et al. Mater. Lett., 2006, 60 (11): 1334--1337. [16] 袁峰, 王红杰, 金志浩(YUAN Feng, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22 (3): 419--422. [17] Rozic L S, Petrovic S P, Novakovic T B, et al. Chem. Eng. J., 2006, 120 (1-2): 55--61. [18] Ahmad A L, Mustafa N N N. J. Colloid Interface Sci., 2006, 301 (2): 575--584. [19] Zhang B Q, Li S F. Ind. Eng. Chem. Res., 1995, 34 (4): 1383--1396. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%