在绝缘材料表面制备半导电性及高导热系数的涂层可以明显提高材料的沿面闪络性能.采用高真空反应磁控溅射方法, 在环氧基片表面溅射TiO2、ZrO2、HfO2薄膜, 使用快脉冲真空闪络实验装置(50ns/600ns, 前沿和半高宽时间), 在真空度5×10-3Pa时, 研究了上述三种氧化物薄膜的真空闪络特性.实验发现, TiO2和ZrO2薄膜以无定形态存在, 表面颗粒未晶化, 而HfO2薄膜已经晶化.TiO2薄膜的闪络电压最高, HfO2薄膜较低.TiO2和HfO2随着溅射时间的增加, 镀膜的真空闪络电压有所提高, 而ZrO2随着溅射时间的增加, 镀膜的真空闪络电压有所下降.结合ANSOFT静电场仿真数据, 分析了薄膜的基本特性对闪络后表面电位分布及闪络电压的影响机制.
Design and manufacture of pulse power equipment greatly depend on the investigation of flashover on dielectric surface in vacuum under pulsed voltage. It is expected that sputtering coating with semiconductivity and high thermal conductivity can apparently improve the surface flashover characteristic of dielectric materials. Three kinds of thin films (TiO2, ZrO2 and HfO2) were sputtered on epoxy substrate using magnetron sputtering in ultrahigh vacuum. Experiments were carried out under high voltage pulse (50ns rise time and 600ns full width at half maximum) in vacuum to study the flashover characteristics of three kinds of oxide films. The experimental results show that the TiO2, ZrO2 films sputtered on the epoxy substrate are amorphous as they are not annealed and surface grains are not crystalized, but HfO2 film becomes crystalized. The flashover voltage of TiO2 film is the highest, the flashover voltage of HfO2 film is close to the epoxy sample. The effect of puttering time on the flashover voltage is different for different target materials. The vacuum flashover voltage increases with the sputtering time increasing for TiO2 and HfO2 films, but decreases for ZrO2 film. Furthermore, the effects of film properties on flashover performance as well as the distribution of surface charge after flashover are analyzed.
参考文献
[1] | Roth I S, Sincerny P S, Mandelcorn L, et al. 11th IEEE International Pulsed Power Conference. USA, Baltimore, 1997. 537--542. [2] Miller H C. IEEE Trans. Dilectr. Electr. Insul., 1993, 28 (4): 512--527. [3] Sudarshan T S, Li C R. IEEE Trans. Dilectr. Electr. Insul., 1997, 4 (5): 657--662. [4] Stamate M D. Applied Surface Science, 2003, 218: 317--322. [5] Alexandrov P, Koprinarova J, Todorov D. Vacuum, 1996, 47 (11): 1333--1336. [6] Jonsson A K, Niklasson G A, Veszelei M. Thin Solid Films, 2002, 402: 242--247. [7] Wang M T, Wang T H, Lee J Y. Microelectronics Reliablity, 2005, 45: 969--972. [8] Zhu J, Liu Z G. Appl. Phys., 2005, A80: 1769--1773. [9] Chen Yu, Cheng Yonghong, Tang Junping, et al. 9th IEEE International Conference on Solid Dielectrics, UK, Winchester, 2007. 345--348. [10] Cheng Yonghong, Chen Yu, et al. 28th International Conference on Phenomena in Ionized Gases, Czech Republic, Prague, 2007. 1502--1505. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%