研究了工作温度、起始氨压和球磨处理对无水CaCl2的吸放氨性能的影响. 结果发现, 球磨2h样品在温度20℃和氨压0.55MPa的条件下, 15min内即可完全氨化, 形成CaCl2(NH3)8, 其吸氨量可达55.1wt%, 相当于储氢量9.72wt%. CaCl2(NH3)8在20~300℃的范围内可通过三步反应实现完全脱氨, 脱氨反应受温度和压力控制, 其中6个NH3分子在常温、常压下即可脱附. 如果与NH3分解催化剂联用, 可能是一种较好的以NH3为介质的高容量储氢材料. 进一步研究表明, 较高的工作温度和起始氨压可以提高CaCl2的吸氨动力学性能, 而球磨时间的增加可以显著降低其放氨工作温度, 提高其放氨动力学性能.
Ammonia absorption/desorption properties of CaCl2 and effects of the operation temperature, starting pressure and ball milling treatment were investigated. The post-2h milled sample can be fully ammoniated to form CaCl2(NH3)8 within 15min under 20℃ and 0.55MPa, and the ammonia storage capacity is 55.1wt%, equivalent to be 9.72 wt% of hydrogen. NH3 can be desorbed from CaCl2(NH3)8 in the temperature range from 20℃ to 300℃ with three stages controlled by temperature and pressure. Six NH3 molecules can be desorbed at ambient temperature and pressure. Combined with NH3 decomposition catalyst, CaCl2 may be one of promising ammonia-based hydrogen storage materials with high capacity. Further investigations indicate that higher operation temperature and starting pressure can improve the ammonia absorption kinetics of CaCl2, and prolonging ball-milling time can decrease the operation temperature for ammonia desorption of CaCl2(NH3)8 and improve its ammonia desorption kinetics.
参考文献
[1] | Atkinson K, Roth S, Hirscher M, et al. Fuel Cells Bulletin, 2001, 38 (4): 9-12. [2] Schlapbach L, Züttel A. Nature, 2001, 414 (6861): 353-358. [3] Ritter J A, Ebner A D, Wang J, et al. Materials Today, 2003, 6 (9): 18-23. [4] Sandrock G. J. Alloys Compd., 1999, 293-295: 877-888. [5] 乔玉卿, 赵敏寿, 朱新坚, 等(QIAO Yu-Qing, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 33-41. [6] Zhu M, Wang H, Ouyang L Z, et al. Int. J. Hydrogen Energy, 2006, 31 (2): 251-257. [7] Bogdanovic’ B, Schwickardi M. J. Alloys Compd., 1997, 253-254: 1-9. [8] Xiong Z T, Wu G T, Hu J J, et al. Advanced Materials, 2004, 16: 1522-1525. [9] Rosi N L, Eddaoudi M, Vodak D T, et al. Science, 2003, 300 (5622): 1127-1129. [10] Christensen C H, SФrensen R Z, Johannessen T, et al. J. Mater. Chem., 2005, 15 (38): 4106-4108. [11] Chen W, Ermanoski I, Madey T E. J. Am. Chem. Soc., 2005, 127 (14): 5014-5015. [12] 王丽伟, 王如竹, 吴静怡, 等, 中国科学E辑, 2004, 34 (3): 268-279. [13] HummeishФj J S, SФrensen R Z, Kustova M Y, et al. J. Am. Chem. Soc., 2006, 128 (1): 16-17. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%