欢迎登录材料期刊网

材料期刊网

高级检索

研究了以纳米Fe3O4和活性炭(AC)为电极材料的超级电容器. 以FeSO4·7H2O和氨水为原料, 采用微波法制备出平均粒径为36nm的Fe3O4纳米粒子. 组装了以6mol/L KOH溶液为电解液的Fe3O4/KOH/Fe3O4、AC/KOH/AC、Fe3O4/KOH/AC三种类型的模拟电容器. 用循环伏安、恒流充放电和交流阻抗法对电容器进行了电化学性能测试. 结果发现, 混合电容器的工作电压可达到1.2V. 电流密度为0.5mA/cm2时, 正/负极质量比为1.5的Fe3O4/KOH/AC电容器的能量密度达到9.25Wh/kg, 与AC/KOH/AC电容器相比, 能量密度提高了53.4%.

The supercapacitor using nano-structured Fe3O4 and activated carbon (AC) as electrode materials was developed. Fe3O4 magnetic nanoparticles with average particle size of 36nm were synthesized by microwave method using FeSO4·7H2O and ammonia as the precipitator. Three kinds of supercapacitors, Fe3O4/KOH/Fe3O4, AC/KOH/AC, Fe3O4/KOH/AC, were prepared using 6mol/L KOH as electrolyte. Cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy were used to study the performance of the electrodes and the supercapacitors. The results show that the operating voltage of Fe3O4/KOH/AC hybrid supercapacitor is 1.2V. When the current density is 0.2mA/cm2 and the weight ratio of active materials (Fe3O4/AC) is 1.5, the energy density of hybrid supercapacitor is 9.25Wh/kg, which is 53.4% higher than that of AC/KOH/AC capacitor with the same electrolyte.

参考文献

[1] Conway B E, Pell W G. J. Power Sources, 2002, 105 (1): 169--181.
[2] 孟庆函, 张睿, 李开喜, 等(MENG Qing-Han, et al). 无机材料学报 (Journal of Inorganic Materials), 2003, 18 (5): 1027--1032.
[3] 张治安, 杨邦朝, 邓梅根, 等(ZHANG Zhi-An, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 529--536.
[4] 文跃华, 曹高萍, 程 杰, 等(WEN Yue-Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (2): 441--447.
[5] Qu D. J. Power Sources, 2002, 109 (2): 403--411.
[6] 王晓峰, 王大志, 梁 吉(WANG Xiao-Feng, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (6): 1167--1173.
[7] Prasad K R, Koga K, Miura N. Chem. Mater., 2004, 16 (10): 1845--1847.
[8] 王晓峰, 孔祥华, 刘庆国, 等. 功能材料, 2002, 33 (5): 513--517.
[9] Cottineau T, Toupin M, Delahaye T, et al. Applied Physics A, 2006, 82 (4): 599--606.
[10] Takei T, Yoshimura K, Yonesaki Y, et al. J. Porous Materials, 2005, 12 (4): 337--343.
[11] Zheng J P, Jow T R. J. Electrochem. Soc., 1995, 142 (1): L6--L8.
[12] Grupioni A A F, Lassali T A F. J. Electrochem. Soc., 2001, 148 (9): A1015--A1022.
[13] Skowronski J M, Jurewicz K. J. Power Sources, 1993, 45 (3): 379.
[14] Wu N L. Materials Chemistry and Physics, 2002, 75 (1-3): 6--11.
[15] Wu N L, Wang S Y, Han C Y, et al. J. Power Sources, 2003, 113 (1): 173--178.
[16] 海岩冰, 袁红雁, 肖 丹. 化学研究与应用, 2006, 18 (6): 744--746.
[17] Zheng J P. J. Electrochemical Society, 2003, 150 (4): A484--A492.
[18] 程 杰, 曹高萍, 杨裕生. 电源技术, 2007, 31 (3): 183--185.
[19] 孙中溪, 郭淑云. 高等学校化学学报, 2006, 27 (7): 1351--1354.
[20] Wang S Y, Ho K C, Kuo S L, et al. J. Electrochemical Society, 2006, 153 (1): A75--A80.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%