以商品活性炭和葡萄糖为原料, 采用水热合成方法, 在活性炭表面和孔内合成纳米炭球, 制得富含含氧官能团的炭球-活性炭复合材料. 通过低温液氮(N_2/77K)吸附测定了炭球-活性炭复合材料的比表面积和孔容、孔径分布. 以SEM观测材料表面形貌. 采用FTIR、XPS分析复合材料的表面官能团结构. 以水相中无机Cr(VI)的去除测试材料的吸附性能. 结果表明:葡萄糖水热处理后在活性炭表面生成炭球, 活性炭孔隙结构降低, 炭球尺寸和分布受葡萄糖溶液浓度影响较大, 活性炭表面生成以OH为主的含氧官能团. 炭球-活性炭复合材料对Cr(VI)的单位质量和单位面积吸附容量最高分别为原料活性炭的近4倍和95倍.
Using glucose and commercial activated carbon (AC) were as starting material, carbon sphere was synthesized on the surface and interior of pores of AC by solvothermal method and a new composite carbon material was prepared which was rich in oxygen-containing functional groups. Nitrogen adsorption isotherm and SEM were used for the observation of pore structure and surface morphology. FTIR and XPS were used for oxygen-containing functional groups analysis. Cr(VI) was used as inorganic metal ion model for adsorption capacity measurement. The results show that micrometer carbon sphere rich in oxygen-containing functional groups can be effectively anchored on the surface of AC. The obtained carbon composites exhibit remarkable enhanced adsorption capacity for Cr(VI) in terms of per mass or per surface area, which is approximately 4 and 95 times of that for AC_(raw), respectively. The size and dispersion of carbon spheres are dependent on the concentration of glucose, as well as the generated oxygen-containing functional groups. With the increase of glucose concentration, the porosity decreases and the number of oxygen-containing functional groups increases and COH becomes dominant.
参考文献
[1] | Figueiredo J L,Pereira M F R,Freitas M M A,et al.Carbon,1999,37(9):1379-1389. |
[2] | Park S J,Park B J,Ryu S K.Carbon,1999,37(8):1223-1226. |
[3] | Park S J,Jang Y S.J.Colloid Interf.Sci.,2002,249(2):458-463. |
[4] | 刘守新,孙承林.化学通报,2004,67(12):898-903. |
[5] | Valdes H,Sanchez M,Rivera J,et al.Langmuir,2002,18(6):2111-2116. |
[6] | Aggarwal D,Goyal M,Bansal R C.Carbon,1999,37(12):1989-1997. |
[7] | Das D D,Mahapatra R,Pradhan J,et al.J.Colloid Interf.Sci.,2000,232(2):235-240. |
[8] | Babel S,Kurniawan T A.Chemosphere,2004,54(7):951-967. |
[9] | Jia Y F,Thomas K M.Langmuir,2000,16(3):1114-1122. |
[10] | Rivera-Utrilla J,Bautista-Toledo I.Carbon,2003,41(2):323-330. |
[11] | Sanchez Polo M,Rivera Utrilla J.Environ.Sci.Technol.,2002,36(17):3850-3854. |
[12] | Rivera Utrilla J,Sanchez Polo M.Water Res.,2003,37(14):3335-3340. |
[13] | Sakaki T,Shibata M,Miki T,et al.Bioresource Technol.,1996,58(2):197-202. |
[14] | Wang Q,Li H,Chen L Q,et al.Carbon,2001,39(14):2211-2214. |
[15] | Xu Y J,Gisela W,Liu X,et al.Adv.Funct.Mater.,2008,18(1):1-7. |
[16] | Sun X M,Li Y D.Angew.Chem.Int.Ed.,2004,43(5):597-601. |
[17] | Wu S Y,Ding Y S,Zhang X M,et al.J.Solid State Chem.,2008,181(9):2171-2177. |
[18] | Mi Y Z,Hu W B,Dan Y M,et al.Mater.Lett.,2008,62(8/9):1194-1196. |
[19] | Garvie L A J.Carbon,2006,44(1):158-160. |
[20] | Hu J G,Wang Z X,Zhang W,et al.Carbon,2006,44(8):1581-1583. |
[21] | Peng Q,Dong Y J,Li Y D.Angew.Chem.Int.Ed.,2003,42(26):3027-3030. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%