以硝酸铜、钼酸钠及氢氧化钠为原料, 采用简单的水相沉淀法, 在60℃下合成出钼铜矿(Cu3(MoO4)2(OH)2). 通过X射线衍射、扫描电镜、透射电镜、热重与差热分析、红外光谱及荧光光谱等测试手段对材料的微观结构、形貌、热稳定性及谱学特性进行表征分析. 结果显示, 制备的产物为结晶性良好的、至少一维是纳米的片状结构材料, 属于单斜型(晶胞参数a=0.53863nm, b=1.40006nm, c=0.56003nm), 其元素摩尔含量比约为3:2:10, 与推测的分子式完全吻合.热重与差热分析数据表明Cu3(MoO4)2(OH)2纳米晶具有很好的热稳定性且起始分解温度为320℃. 通过软件测得的d(021)面与d(ī21)面的晶间面距分别为0.435nm与0.358nm, 与理论值基本相符. 经测量,Cu3(MoO4)2(OH)2纳米晶具有强的荧光性质,在激发波长369nm的作用下在530nm表现为强发射峰. 此外,还探讨了Cu3(MoO4)2(OH)2纳米晶的形成机理.
Lindgrenite (Cu3(MoO4)2(OH)2) nanocrystals were synthesized by simple aqueous precipitation at 60 ℃ , using Cu(NO3)2·6H2O, Na2MoO4·2H2O and NaOH as the starting materials. X-ray Diffraction ( XRD) patterns confirm the formation of pure Cu3(MoO4)2(OH)2 nano crystals, which belongs to the monoclin ic phase with calculated crystal parameters a = 0.53863 nm, b = 1.40006 nm, c = 0.56003 nm, β = 98.47°, α = γ = 90° . The e nergy d ispersive X-ray spectrum (ED X ) analysis gives an approximate atomic ratio of 3 : 2 : 10 for Cu : Mo: O. The scanning electron microscope(SEM) and transmission electron microscop e (TEM) studies show that the as-prepared nanoparticles are well crystallized with tabular structure and t he interplanar distances of d 021 and dī 2 1 measured are 0. 435 nm and 0.358 nm , coinciding with the theoretical value. It can also be seen that the Cu3(MoO4)2(OH)2 has a good thermal stability and starts decomposing at 320 ℃ through thermogravimetric- differential thermal analysis (TG-DTA) . Moreover, the strong fluorescent property of the Cu3(MoO4)2(OH)2 is measured, with green emission peak at ca. 530 nm upon excitation at ca. 369 nm. Finally, a possible m e ch a nism for the formation of Cu3(MoO4)2(OH)2 nanocrysta ls is proposed.
参考文献
[1] | Winkler H G F. Petrogenesis of Metamorphic rock, 5th ed. New York: Springer Verlag, 1979: 472. [2] Chang L L Y. Industrial Mineralogy. Materials, Processes, and Uses. Prentice Hall, Upper Saddle River, New Jersey, 2002: 472. [3] Starnes Jr W H, Pike R D, Cole J R, et al. Cone calorimetric study of copper-promoted smoke suppression and fire retardance of poly(vinyl chloride). Polym. Degrad. Stab. , 2003, 82(1): 15 - 24. [4] Palache C. Lindgrenite, a new mineral. Am. Mineral. , 1935, 20(7): 484 - 491. [5] Moini A, Peascoe R, Rudolf P R, et al. Hydrothermal synthesis of copper molybdates. Inorg. Chem. , 1986, 25 (21): 3782 - 3785. [6] Vilminot S, André G, Richard-Plouet M, et al. Magnetic structure and magnetic properties of synthetic lindgrenite, Cu3(OH)2(MoO4)2. Inorg. Chem. , 2006, 45(26): 10938 - 10946. [7] Bao R L, Kong Z P, Gu M, et al. Hydrothermal synthesis and thermal stability of natural mineral lindgrenite. Chem. Res. Chinese U. , 2006, 22(6): 679 - 683. [8] Shores M P, Bartlett B M, Nocera D G. Spin-frustrated organic- inorganic hybrids of lindgrenite. J. Am. Chem. Soc. , 2005, 127(51): 17986 - 17987. [9] Xu J S, Xue D F. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture. J. Solid State Chem. , 2007, 180(1): 119 - 126. [10] Alexandre M, Beyer G, Henrist C, et al. Preparation and p roperties of l ayered s ilicate n anocomposites b ased on e thylene v inyl a cetate copolymers. Macromol. Rapid Commun. , 2001, 22(8): 643 - 646. [11] Li H Y, Chen Y F, Xie Y S. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic a pplication. Mater. Lett. , 2003, 57(19): 2848 - 2854. [12] Frost R L, Duong L, Weier M. Raman microscopy of the molybdate minerals koechlinite, iriginite and lindgrenite. Neues Jahrbuch fuer Mineralogie, Abhandlungen, 2004, 180(3): 245 - 260. [13] Calvert L D, Barnes W H. T he structure of Lindgrenite. Can. Mineral. , 1957, 6: 31 - 51. [14] Jiang W J, Hua X, Han Q F, et al. Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method. Powder Technol. , 2009, 191(3): 227 - 230. [15] Hassanzadeh-Tabrizi S A, Taheri-Nassaj E, Sarpoolaky H. Synthesis of an alumina–YAG nanopowder via Sol-Gel method. J. Alloys Compd. , 2008, 456(1/2): 282 - 285. [16] Ryu J H, Yoon J W, Lim C S, et al. Microwave-assisted synthesis of barium molybdate by a citrate complex method and oriented aggregation. Mater. Res. Bu l l. , 2005, 40( 1 ): 1468 - 1476. [17] Sczancoski JC, Cavalcante L S, Joya M R, et al. SrMoO4 powders processed in microwave- hydrothermal: s ynthesis, characterization and optical properties. Chem. Eng. J. , 2 008, 140 ( 1/2/3 ): 632 - 637. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%