欢迎登录材料期刊网

材料期刊网

高级检索

以正硅酸乙酯(TEOS)和钛酸正丁酯(TBOT)为原料, 采用溶胶-凝胶法制备了SiO2溶胶和TiO2溶胶, 利用浸渍提拉法制备了SiO2/TiO2双层减反膜. 用紫外-可见分光光度计(UV-Vis)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、椭圆偏振光谱仪和接触角测量仪等分析表征了薄膜的特性, 以光催化降解甲基橙溶液实验来评价薄膜的自洁功能, 考察了SiO2/TiO2双层减反膜的耐磨擦性. 结果表明, SiO2/TiO2双层减反膜在400~800nm可见光波段的透光率最高可达97.2%, 薄膜表面平整, 结构致密且粗糙度小, 经紫外灯照射后薄膜的水接触角接近0°, 光催化2h后可将5mg/L的甲基橙溶液降解43.6%. SiO2/TiO2减反膜还具有优良的耐磨擦性能.

The SiO2 and TiO2 Sol were prepared via Sol-Gel process using tetraethyl orthosilicate(TEOS) and tetrabutyl orthotitanate(TBOT), and the SiO2/TiO2 bilayer coatings with antireflection property were obtained by dip-coating method. The performances of the coatings were analyzed with ultraviolet visible spectrophotometer (UV-Vis), X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), ellipsometer and contact angle measurement. The self-cleaning function of coatings was evaluated by means of photocatalytic degradation of methyl orange in aqueous solution, and scratch-resistant property of the coatings was studied. The results indicate that the peak transmission of the SiO2/TiO2 bilayer coating is up to 97.2% in the visible band, the coating has a flat surface, a dense structure and a low roughness. After illuminated by ultraviolet light for 2h, the SiO2/TiO2 bilayer coating is superhydrophilic with water contact angle up to 0°, and the 5mg/L methyl orange can be degraded by 43.6% in 2h. Moreover, the SiO2/TiO2 bilayer coating has an excellent scratch-resistant property.

参考文献

[1] 赵秀琴. 增透膜和增反膜. 太原师范学院学报(自然科学版), 2003, 2(4): 42-45.

[2] 沈 军, 王晓栋, 王生钊, 等. 溶胶-凝胶技术在玻璃镀膜中的应用. 光子学报, 2008, 37 (suppl): 34-38.

[3] Thomas I M. High laser damage threshold porous silica antireflective coating. Appl. Opt., 1986, 25(9): 1481-1483.

[4] 王晓栋, 沈 军, 谢志勇, 等. 太阳能玻璃表面高强度双层减反膜制备研究. 光子学报, 2009, 38(10): 2501-2505.

[5] 申乾宏, 杨 辉, 高基伟(SHEN Qian-Hong, et al). 正硅酸乙酯对锐钛矿型二氧化钛多孔薄膜的室温制备及性能的影响. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2008, 36(6): 788-793.

[6] Morris D, Egdell R G. Application of V-doped TiO2 as a sensor for detection SO2. J. Mater. Chem., 2001, 11: 3207-3210.

[7] Peng B, Jungmann G, J-ger C, et al. Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells. Coord. Chem. Rev., 2004, 248(13/14): 1479-1489.

[8] 吴聪聪, 卓燕君, 朱沛宁, 等(WU Cong-Cong, et al). 高长径比TiO2纳米管阵列的调控制备及其光阳极性能. 无机材料学报(Journal of Inorganic Materials), 2009, 24(5): 897-901.

[9] 孙 剑, 刘守新(SUN Jian, et al). La掺杂TiO2膜的制备及其对甲苯的去除性能. 无机材料学报(Journal of Inorganic Materials), 2010, 25(9): 928-934.

[10] Mills A, Lepre A, Elliott N, et al. Characterisation of the photocatalyst Pilkington ActivTM: a reference film photocatalyst. J. Photochem. Photobiol., A: Chem., 2003, 160(3): 213-224.

[11] Fujishima A, Zhang X T. Titanium dioxide photocatalysis: present situation and future approaches. C. R. Chimie, 2006, 9(5/6): 750-760.

[12] Watanabe T, Nakajima A, Wang R, et al. Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 1999, 351(1/2): 260-263.

[13] 李 云, 王六定. 电子束蒸发法制备TiO2薄膜的折射率研究. 真空, 2008, 45(5): 35-37.

[14] 沈 军, 吴筱娴, 谢志勇, 等. 用于太阳电池的SO2增透膜的制备及性能研究. 太阳能学报, 2007, 28(9): 943-946.

[15] 郑遗凡, 李国华, 田 伟, 等(ZHENG Yi-Fan, et al). 纳米锐钛矿相变的原位XRD研究. 无机化学学报(Chinese Journal of Inorganic Chemistry), 2007, 23(6): 1121-1125.

[16] 晏良宏, 匙芳廷, 蒋晓东, 等(YANG Liang-Hong, et al). 疏水疏油二氧化硅增透膜的制备. 无机材料学报(Journal of Inorganic Materials), 2007, 22(6): 1247-1250.

[17] Nostell P, Roos A, Karlsson B. Optical and mechanical properties of Sol-Gel antireflective films for solar energy applications. Thin Solid Films, 1999, 351(1/2): 170-175.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%