针对目前常规高温固体氧化物电解池(SOEC)阴极材料水蒸气扩散阻力大、极化能量损失高和稳定性差的不足,本研究采用聚甲基丙烯酸甲酯(PMMA)造孔剂对SOEC阴极材料进行了微观结构调整和优化,以提高其电解过程制氢性能和耐候性.实验结果表明:采用PMMA造孔剂可以显著降低水蒸气的扩散阻力,提高SOEC的电解效率和制氢性能.当PMMA的添加量为10wt%时,阴极材料的孔隙率高达45%,孔形规整圆形,分布均匀,孔径约为10μm.微观结构改进后,阴极的电导率为6726 S/cm,运行稳定,具有较高的机械强度.当电解温度为850℃,电压1.3V时,与采用淀粉造孔剂的SOEC相比,采用PMMA造孔剂的SOEC在运行过程中水蒸气扩散阻抗降低50%,产氢率提高50%.
参考文献
[1] | Stoots C M,O'Brien J E,Condie K G,et al.High-temperature electrolysis for large-scale hydrogen production from nuclear energyexperimental investigations.Int.J.Hydrogen Energy,2010,35(10):4861-4870. |
[2] | Jensen S H,Sun X F,Ebbesen S D,et al.Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells.Int.J.Hydrogen Energy,2010,35(18):9544-9549. |
[3] | YU B,Zhang W Q,Chen J,et al.Advance on highly efficient hydrogen production by High temperature steam electrolysis.Science in China Series B:Chemistry,2008,51(4):289-304. |
[4] | Yildiz B,Kazimi M S.Efficiency of hydrogen production systems using alternative nuclear energy technologies.Int J.Hydrogen Energy,2006,31(1):77-92. |
[5] | 韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.北京:科学出版社,2004. |
[6] | Shao Z P,Haile M.A high-performance cathode for the next generation of solid-oxide fuel cells.Nature,2004,431(9):170-173. |
[7] | Wang W G,Mogensen M.High-performance lanthanum-ferrite-based cathode for SOFC.Solid State Ionics,2005,176(5/6):457-462. |
[8] | Hu Qiang,Wang Shao-Rong,Wen Ting-Lian.Analysis of processes in planar solid oxide fuel cells.Solid State Ionics,2008,179(27-32):1579-1587. |
[9] | Jensen,S.H,Mogensen,M.Perspectives of High Temperature Electrolysis Using SOEC.19th World Energy Congress,Sydney (AU),2004. |
[10] | Yu B,Zhang W Q,Xu J M,et al.Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET.Int.J.Hydrogen Energy,2010,35(7):2829-2835. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%