欢迎登录材料期刊网

材料期刊网

高级检索

采用常压直流电沉积技术在有序多孔氧化铝(OPAA)模板内沉积Cu纳米晶, 制备出光学透明的铜纳米晶/ OPAA复合膜. 利用FESEM、TEM、紫外可见分光光度计、Z-scan技术、泵浦探测技术对该复合材料的形貌、结构、线性光吸收、三阶非线性极化率和光响应时间进行了分析. 结果表明, Cu纳米颗粒具有面心立方结构, 直径在40~50 nm之间, 分布在OPAA模板的分叉孔道区. 填充于有序多孔氧化铝模板中的Cu纳米晶在584 nm处出现等离子体共振吸收峰. 当探测光波长远离铜纳米晶的等离子体共振吸收峰时, Cu纳米晶/多孔氧化铝复合膜出现光致吸收特性, 而当探测光波长接近铜纳米晶的等离子体共振吸收峰时, 出现光致漂白现象. 该复合膜非共振三阶非线性极化率为0.73×10-9esu, 光响应时间为1.3ps. 

Optically transparent Cu nanocrystalline/OPAA composite film was successfully prepared by electrodepositing Cu into ordered porous anodic alumina (OPAA) template using constant voltage direct current technique. The morphology, structure, linear optical absorption, third-order optical nonlinearity and ultrafast dynamics of the Cu/OPAA composite were characterized by field emission scanning electron microscope (FESEM), transmission electron microscope (TEM). UV-Vis spectrophotometer, Z-scan technique and femtosecond pump-probe experiment. The results show that Cu nanoparicles have diameters of 40–50nm with face center cubic structure and disperse in the branched pores of the OPAA template, which induce a surface plasmon resonance (SPR) absorption at 584 nm. When the probe optical wavelength is far away from the SPR wavelength, Cu nanocrystalline/OPAA composite film possesses a character of light-induced absorption. When the probe optical wavelength is near the SPR wavelength, it possesses a photo-bleaching character. The composite film has a non-resonant third-order nonlinear susceptibility of 0.73×10-9 esu and a response time of 1.3 ps.

参考文献

[1]
[2] Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer, 1995: 26-75.

[2] 张立德, 牟季美. 纳米材料与纳米结构. 北京: 科学出版社, 2001: 79-84.

[3] Link S, El -Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B, 1999, 103(40): 8410-8426.

[4] Thomas S, Nair S K, Jamal E, et al. Size-dependent surface plasmon resonance in silver silica nanocomposites. Nanotechnology, 2008, 19(7): 075710-1-7.

[5] Voisin C, Fatti N D, Christofilos D, et al. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B, 2001, 105(12): 2264-2280.

[6] Jiang Y, Wang H Y, Xie L P, et al. Study of electron-phonon coupling dynamics in Au nanorods by transient depolarization measurements. J. Phys. Chem. C, 2010, 114(7): 2913-2917.

[7] Kondo T, Nishio K, Masuda H. Surface-enhanced Raman scattering in multilayered Au nanoparticles in anodic porous alumina matrix. Appl. Phys. Exp., 2009, 2: 032001-032003.

[8] Ji N, Ruan W D, Wang C X, et al. Fabrication of silver decorated anodic aluminum oxide substrate and its optical properties on surface- enhanced Raman scattering and thin film interference. Langmuir, 2009, 25(19): 11869-11873.

[9] Jain P K, Huang X H, El-Sayed I H, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts Chem. Res., 2008, 41(12): 1578-1586.

[10] Schrof W, Rozouvan S, Keuren E V, et al. Nonlinear optical properties of polyelectrolyte thin film containing gold nanoparticles investigated by wavelength dispersive femtosecond degenerate four wave mixing (DFWM). Adv. Mater., 1998, 10(4): 338-341.

[11] Yang X C, Li Z H, Li W J, et al. Optical nonlinearity and ultrafast dynamics of ion exchanged silver nanoparticles embedded in soda- lime silicate glass. Chin. Sci. Bull., 2008, 53(5): 695-699.

[12] Yang X C, Dong Z W, Liu H X, et al. Effects of thermal treatment on the third-order optical nonlinearity and ultrafast dynamics of Ag NPs embedded in silicate glasses. Chem. Phys. Lett., 2009, 475(4/5/6): 256-259.

[13] You G J, Zhou P, Zhang C F, et al. Ultrafast studies on the energy relaxation dynamics and the concentration dependence in Ag: Bi2O3 nanocomposite films. Chem. Phys. Lett., 2005, 413(1/2/3): 162-167.

[14] Choi J, Sauer G, Nielsch K, et al. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem. Mater., 2003, 15(3): 776-779.

[15] Zong R L, Zhou J, Li B, et al. Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J. Chem. Phys., 2005, 123(9): 094710-1-5.

[16] 徐敏敏, 王 梅, 姚建林, 等. 模板法合成金属-分子-金属异质结及表面增强拉曼光谱研究. 光谱学与光谱分析, 2009, 129(15): 1289-1291.

[17] 邹 骁, 李晓宁, 杨修春, 等. Cu/AAO 复合材料的制备及表征. 功能材料, 2010, 41(2): 321-323.

[18] Yang X C, Zou X, Liu Y, et al. Preparation and characteristics of large-area and high-filling Ag nanowire arrays in OPAA template. Mater. Lett., 2010, 64(13): 1451-1454.

[19] Zong R L, Zhou J, Li Q, et al. Linear and nonlinear optical properties of Ag nanorods/AAM composite films. Chem. Phys. Lett., 
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%