欢迎登录材料期刊网

材料期刊网

高级检索

以萘系中间相沥青为原料, 通过熔融纺丝、氧化稳定化、炭化和石墨化处理制得了表面光洁平整的高取向带状纤维, 采用红外光谱仪、元素分析仪、X射线衍射仪、拉曼光谱、扫描电子显微镜和偏光显微镜对带状纤维的组成、形貌和微观结构进行了表征. 研究结果表明: 带状沥青纤维氧化稳定化过程中生成的羧基、羰基、醚等含氧官能团在随后炭化处理过程中消失; 带状沥青纤维截面的平均宽度和厚度约为1.6mm和18μm, 经炭化和石墨化处理后收缩至1.2mm和9μm; 随热处理温度的升高, 带状炭纤维(002)晶面的衍射峰逐渐变强, 其晶体尺寸逐渐变大; 与炭化处理纤维相比, 石墨化纤维晶体结构更加完整, 沿纤维主表面的取向程度更高.

Using a naphthalene derived mesophase pitch as starting material, high oriented ribbon-shaped carbon fibers with smooth and flat surface were prepared by melt-spinning, oxidation stabilization as well as further carbonization and graphitization processes. The composition, morphologies and microstructure of the ribbon-shaped carbon fibers treated at various conditions were characterized by elemental analyses, IR spectroscopy, XRD, Raman spectroscope, scanning electron microscope and polarized-light microscope. The results show that the carboxyl, carbonyl and ether functional groups formed during the oxidizing stabilization process are removed by subsequent carbonization treatment. The width and thickness of the ribbon-shaped fibers at the transverse section decrease from 1.6mm and 18?m of pitch fiber to 1.2mm and 9?m of graphitized carbon fibers, respectively. The relative intensity of the diffraction peak at about 2? = 26? corresponding to (002) crystal plane of hexagonal graphite increases with the heat-treatment temperature increasing. This indicates that the crystal size of graphite in this carbon fibers also increases in this process. In comparison with the carbonized fibers, the carbon fibers after graphitization treatment display more perfect crystal orientation along the main surface of ribbon-shaped carbon fibers.

参考文献

[1] Otani S. On the carbon fiber from the molten pyrolysis products. Carbon, 1965, 3(1): 31-38.

[2] Singer L S. The mesophase and high modulus carbon fibers from pitch. Carbon, 1978, 16(6): 409-415.

[3] Paiva M C, Bernardo C A, Nardin M. Mechanical surface and interfacial characterization of pitch and PAN-based carbon fibres. Carbon, 2000, 38(9): 1323-1337.

[4] Gallego N C, Edie D D, Nysten B, et al. The thermal conductivity of ribbon-shaped carbon fibers. Carbon, 2000, 38(7): 1003-1010.

[5] Ma Zhaokun, Shi Jingli, Song Yan, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers. Carbon, 2006, 44(7): 1298-1301.

[6] 芦时林, Brian Rand. 高导热大直径中间相沥青炭纤维的研制及结构表征. 新型炭材料, 2000, 15(1): 1-5.

[7] Edie D D, Fox N K, Barnett B C, et al. Melt-spun non-circular carbon fibers. Carbon, 1986, 24(4): 477-482.

[8] Mochida I, Yoon S H, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fibre using noncircular spinning nozzles. J. Mater. Sci., 1993, 28(9): 2331-2336.

[9] Edie D D, Robinson K E, Fleurot O, et al. High thermal conductivity ribbon fibers from naphthalene-based mesophase. Carbon, 1994, 32(6): 1045-1054.

[10] Lu S, Blanco C, Appleyard S, et al. Texture studies of carbon and graphite tapes by XRD texture goniometry. J. Mater. Sci., 2002, 37(24): 5283-5290.

[11] Edie D D, Fain C C, Robinson K E, et al. Ribbon-shape carbon fibers for thermal management. Carbon, 1993, 31(6): 941-949.

[12] Gallego N C, Edie D D. Structure-property relationships for high thermal conductivity carbon fibers. Composites: Part A, 2001, 32(8): 1038-1043.

[13] Charles Q Y, John R S. Infrared spectroscopy studies of the petroleum pitch carbon fibre: I. The raw materials, the stabilisation, and carbonisation processes. Carbon, 1993, 31(3): 451-459.

[14] Drbohlav J, Stevenson W T K. The oxidative stabilization and carbonization of a synthetic mesophase pitch, part I: The oxidative stabilization process. Carbon, 1995, 33(5): 693-711.

[15] Wazir A H, Kakakhel L. Preparation and characterization of pitch-based carbon fibers. New Carbon Mater., 2009, 24(1): 83-88.

[16] Lavin J G. Chemical reactions in the stabilization of mesophase pitch-based carbon fiber. Carbon, 1992, 30(3): 351-357.

[17] Kowbel W, Wapner P G, Wright M A. A study of the oxidation of mesophase. J. Phys. Chem. Solids, 1998, 49(11): 1279-1285.

[18] Horr N E, Bourgerette C, Oberlin A. Mesophase powders carbonization and graphitization. Carbon, 1994, 32(6): 1035-1044.

[19] Dumont M, Dourges M A, Bourrat X, et al. Carbonization behaviour of modi-ed synthetic mesophase pitches. Carbon, 2005, 43(11): 2277-2284.

[20] Korai Y, Hong S H, Mochida I. Development of longitudinal mesoscopic textures in mesophase pitch-based carbon fibers through heat treatment. Carbon, 1999, 37(2): 203-211.

[21] Arai Y. Structure and properties of pitch-based carbon fibers. Nippon Steel Technical Report, 1993, 59: 65-70.

[22] Tuinstra F, Koenig J L. Raman spectrum of graphite. J. Chem. Phys., 1970, 53(3): 1126-1130.

[23] Tuinstra F, Koenig J L. Characterization of graphite fiber surfaces with Raman spectroscopy. J. Compos. Mater., 1970, 4(4): 492-499.

[24] 马兆昆, 刘 朗, 刘 杰(MA Zhao-Kun, et al). 纺丝工艺对带形中间相沥青基石墨纤维取向结构及热导率的影响. 无机材料学报(Journal of Inorganic Materials), 2010, 25(9): 989-993.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%