通过对炭/炭复合材料纤维束界面不同成型阶段结构和性能的研究, 探索束界面在制备过程中的形成规律. 采用顶出实验、SEM、Micro-CT、XRD以及Raman对不同成型阶段的炭/炭复合材料中纤维束/基体界面剪切强度、界面层结构进行了分析. 结果发现材料密度较低时, 石墨化程度增加不利于束界面剪切强度的提高; 随着材料密度的增大, 束界面剪切强度明显升高. 通过对其界面结构进行分析, 可以看出在沥青浸渍、炭化和石墨化的制备过程中, 炭基体优先在束内形成, 然后逐步向束界面层及束间空间发展, 最后束界面层组织结构趋于完善. 随着热处理温度的升高, 其界面层组织结构的石墨化程度逐渐增强, 其结晶程度也不断增强.
The interfacial performances of carbon/carbon composites in different process stages were characterized by push-out method to find the formation law of fiber-bundle/matrix interlayer in the process of carbon/carbon composites preparation. Microstructures in fiber-bundle/matrix interlayer of carbon/carbon composites obtained from different process stages were investigated through SEM, Micro-CT, XRD and Raman spectrum. Experiment results of interfacial shear strength of specimens obtained from different process stages show that, the interfacial shear strength of specimen with lower density was not clearly increased with the degree of graphitization increasing; however, the interfacial shear strength was clearly increased with the density of specimens increasing. The observation of the interfacial microstructures of the composite showed that matrix was firstly formed in intrabundles, then formed in bundle surface and interbundles. The degrees of graphitization and crystallization at surface were gradually increased with heat-treatment temperature increasing. The experiment results show that interfacial structures and performances in fiber-bundle/matrix interlayer of carbon/carbon composites gradually develop to be perfect with repeated cycles of in-ltration-carbonization-graphitization process.
参考文献
[1] | Kogo Y, Sumiya R, Hatta H, et al. Examination of strength-controlling factors in C/C composites using bundle composites. Advanced Composite Materials, 2003, 12(2/3): 139-140.[2] Chen T F, Liao J Q, Liu G S, et al. Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites. Carbon, 2003, 41(5): 993-994.[3] Dillon F, Thomas K M, Marsh H. The in-uence of matrix microstructure on the mechanical properties of CFRC composites. Carbon, 1993, 31(8): 1337-1348.[4] Furukawa Y, Hatta H, Kogo Y. Interfacial shear strength of C/C composites. Carbon, 2003, 41(10): 1819-1826.[5] Aoki T, Yamane Y, Ogasawara T, et al. Measurements of -ber bundle interfacial properties of three-dimensionally reinforced carbon/ carbon composites up to 2273K. Carbon, 2007, 45(3): 459-467.[6] 孙万昌, 李贺军, 卢锦花, 等(SUN Wan-Chang, et al). 不同层次界面对C/C复合材料断裂行为的影响. 无机材料学报(Journal of Inorganic Materials), 2005, 20(6): 1457-1462.[7] Sakai M, Matsuyama R, Miyajima T. The pull-out and failure of a -ber bundle in a carbon -ber reinforced carbon matrix composite. Carbon, 2000, 38(15): 2123-2131.[8] Valette L, Rouby D, Tallaron C. Analysis of pull-out and failure of unidirectional bundles in a laminated carbon/carbon composite. Composites Science and Technology, 2002, 62(4): 513-518.[9] Domnanovich A, Peterlik H, Kromp K. Determination of interface parameters for carbon/carbon composites by the fiber-bundle pull-out test. Composites Science and Technology, 1996, 56(9): 1017-1029.[10] 孙文训, 黄玉东, 张志谦. 原位法表征炭/炭复合材料界面性能的研究. 材料科学与工艺, 1998, 6(2): 1-4.[11] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon, 2005, 43(8): 1731-1742.[12] Angoni K. Remarks on the structure of carbon materials on the basis of raman spectra. Carbon, 1993, 31(4): 537-547.[13] Chollon G, Takahashi J. Raman microspectroscopy study of a C/C composite. Composites: Part A: Applied Science and Manufacturing, 1999, 30(4): 507-513. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%