欢迎登录材料期刊网

材料期刊网

高级检索

采用EDTA-柠檬酸联合络合法制备了(Ce0.8Y0.2-xNdxO1.9)0.99(ZnO)0.01(0≤x≤0.2)系列电解质试样.通过热重、X射线衍射、扫描电镜、热膨胀测试和交流阻抗谱等方法对试样进行分析,着重研究了Y/Nd掺杂配比对CeO2基电解质材料电性能的影响.结果表明:采用EDTA-柠檬酸联合络合法制备的试样均为单一的立方萤石型结构;添加1mol%的ZnO,在1350℃下能得到较为致密的(Ce0.8Y0.2-xNdxO1.9)0.99(ZnO )0.01系列电解质陶瓷片,其中(Ce0.8Y0.05Nd0.15O1.9)0.99(ZnO)0.01电解质试样表现出最高的离子电导率,其在750℃测试时的离子电导率为58.79 mS/cm;所有试样的热膨胀系数在(11.83~12.30)× 10-6/K之间.

参考文献

[1] George R A.Status of tubular SOFC field unit demonstrations,Journal of Power Sources,2000,86(1/2):134-139.
[2] Hibino T,Hashimoto A,Inoue T,et al.A low operating temperature solid oxide fuel cell in hydrocarbon-air mixtures.Science,2000,288(5473):2031-2033.
[3] Ralph J M,Schoeler A C,Krumpelt M.Materials for lower temperature solid oxide fuel cells.Journal of Materials Science,2001,36(5):1161-1172.
[4] Gao L,Zhou M,Zheng Y F,et al.Effect of zinc oxide on yttria doped ceria. Journal of Power Sources, 2010, 195(10):3130-3134.
[5] Steele B C H.Materical science and engineering:the enabling technology for the comercialisation of fuel cell systems.Journal of Materials Science,2001,36(5):1053-1068.
[6] Zhu B.Advantage of intermediate temperature solid oxide fuel cells for tractionary applications.Journal of Power Sources,2002,93(1/2):82-86.
[7] Steele B C H.Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃,Solid State Ionics,2000,129(1-4):95-110.
[8] Masashi Mori,Eisaku Suda,Bernard Pacaud,et al.Effect of components in electrodes on sintering characteristics of Ce0.9Gd0.1O1.95 electrolyte in intermediate-temperature solid oxide fuel cells during fabrication.Journal of Power Sources,2006,157(2):688-694.
[9] Mogensen M,Sarnmes N M,Tompsett G A.Physical,chemical and electrochemical properties of pure and doped ceria.Solid State Ionics,2000,129(1-4):63-94.
[10] Tadokoro S K,Muccillo E N S.Influence of the precursor purity and the precipitating agent on impedance spectroscopy of CeO2:Y2O3 ceramics.Journal of Alloys and Compounds,2004,374(1/2):190-193.
[11] Zha S W,Xia C R,Meng G Y.Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells.Journal of Power Sources,2003,115(1):44-48.
[12] Yamamura H,Katoh E,Ichikawa M,et al.Multiple doping effect on the electrical conductivity in the (Ce1-x-yLaxMy)O2-δ (M =Ca,Sr)system.Electrochemistry,2000,68(6):455-459.
[13] Wang F Y,Wan B Z,Cheng S.Study on Gd3+ and Sm3+co-doped ceria-based electrolytes.Journal of Solid State Electrochemistry,2005,9(3):168-173.
[14] Chung D Y,Lee E H.Microwave-induced combustion synthesis of Ce1-xSmxO2-x/2 powder and its characterization.Journal of Alloys and Compounds,2004,374(1/2):69-73.
[15] Zhang T S,Ma J,Kong L B,et al.Sinterability and ionic conductivity of coprecipitated Ce0.8Gd0.2O2-δ powders treated via a high-energy bail-milling process.Journal of Power Sources,2003,124(1):26-33.
[16] Zhang X,Decès P C,Yick S,et al.A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte.Journal of Power Sources,2006,162(1):480-485.
[17] Zhang T S,Ma J,Kong L B,et al.Iron oxide as an effective sintering aid and a grain boundary scavenger for ceria-based electrolytes.Solid State Ionics,2004,167(1/2):203-207.
[18] Li S J,Ge L,Gu H T,et al.Sinterability and electrical properties of ZnO-doping Ce0.8Y0.2O1.9 electrolytes prepared by EDTA-citrate complexing method.Journal of Alloys and Compounds,2011,509(1):94-98.
[19] Ge L,Li S J,Yi F Z,et al.Effect of zinc oxide doping on the grain boundary conductivity of Ce0.8Ln0.2O1.9 ceramics (Ln=Y,Sm,Gd).Journal of Power Sources,2011,196(15):6131-6137.
[20] Shao Z P,Haile S M.A high-performance cathode for the next generation of solid-oxide fuel cells.Nature,2004,431(9):170-173.
[21] Shao Z P,Wang W S,Cong Y,et al.Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane.Journal of Membrane Science,2000,172(1/2):177-188.
[22] Ding X F,Liu Y J,Gao L,et al.Synthesis and characterization of doped LaCrO3 perpared by EDTA-citrate complexing method.Journal of Alloys and Compounds,2008,458(1/2):346-350.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%