小样品力学性能试验方法(Modified Small Punch Tests, 简称MSP)是评价陶瓷材料力学性能的一种有效方法. 采用改进型多场耦合小冲压(MSP)试验法评价了Pb(Zr,Ti)O3陶瓷(PZT)在力电耦合和纯力场下的疲劳性能. 通过对比在纯力场和力电耦合下的力学性能可以看出: 与纯力场下相比, PZT陶瓷在力电耦合下的断裂强度会降低. 在力场和电场的同时作用下, 疲劳寿命显著缩短, 压电陶瓷材料内部易出现沿晶断裂.
Modified small punch (MSP) tests are effective evaluation methods for mechanical properties by using small specimens. Fatigue properties of PZT ceramics under electro-mechanical coupling field and pure force field were evaluated with multi-fields coupling MSP tests. It is found that the fracture strength of the samples under electro- mechanical field would sharply decrease, compared with the samples under pure force field. Fatigue life would decrease greatly and intergranular fracture would happen easily under electro-mechanical coupling field.
参考文献
[1] | Bexell M, Johansson S. Fabrication and evaluation of a piezoelectric miniature motor. Sensors and Actuators a-Physical, 1999, 75(1): 8-16.[2] Tressler J F, Alkoy S, Newnham R E. Piezoelectric sensors and sensor materials. Journal of Electroceramics, 1998, 2(4): 257-272.[3] Fu R, Qian C F, Zhang T Y. Electrical fracture toughness for conductive cracks driven by electric fields in piezoelectric materials. Applied Physics Letters, 2000, 76(1): 126-128.[4] Fu R, Zhang T Y. Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. Journal of the American Ceramic Society, 2000, 83(5): 1215-1218.[5] Wang H, Wereszczak A A. Effects of electric field and biaxial flexure on the failure of poled lead zirconate titanate. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55(12): 2559-2570.[6] Pedersen T O, Tvergaard V. On low cycle fatigue in metal matrix composites. International Journal of Damage Mechanics, 2000, 9(2): 154-173.[7] Birman V, Byrd L W. Damping in ceramic matrix composites with matrix cracks. International Journal of Solids and Structures, 2003, 40(16): 4239-4256.[8] Kawakami Y, Takeshige F, Hayashi M, et al. Fatigue of tooth-colored restoratives in aqueous environment. Dental Materials Journal, 2007, 26(1): 1-6.[9] Mitov G, Lohbauer U, Rabbo M A, et al. Investigations of subcritical crack propagation of the Empress 2 all-ceramic system. Dental Materials, 2008, 24(2): 267-273.[10] Jung Y G, Peterson I M, Kim D K, et al. Lifetime-limiting strength degradation from contact fatigue in dental ceramics. Journal of Dental Research, 2000, 79(2): 722-731.[11] Dusza J, Sajgalik P, Steen M, et al. Dynamic fatigue of a Si3N4+SiC nanocomposite at 1350℃. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2000, 291(1/2): 250-255.[12] Dusza J, Sajgalik P, Steen M, et al. Low-cycle fatigue strength under step loading of a Si3N4+SiC nanocomposite at 1350℃. Journal of Materials Science, 2001, 36(18): 4469-4477.[13] Thompson G A. Determining the slow crack growth parameter and weibull two-parameter estimates of bilaminate disks by constant disp lacement-rate flexural testing. Dental Materials, 2004, 20(1): 51-62.[14] Zhang Y, Lawn B R, Rekow E D, et al. Effect of sandblasting on the long-term performance of dental ceramics. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2004, 71B(2): 381-386.[15] Sundh A, Molin M, Sjogren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dental Materials, 2005, 21(5): 476-482.[16] Teixeira E C, Piascik J R, Stoner B R, et al. Dynamic fatigue and strength characterization of three ceramic materials. Journal of Materials Science-Materials in Medicine, 2007, 18(6): 1219-1224.[17] Clausen J O, Abou Tara M, Kern M. Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design. Dental Materials, 2010, 26(6): 533-538.[18] Griggs J A, Alaqeel S M, Zhang Y L, et al. Effects of stress rate and calculation method on subcritical crack growth parameters deduced from constant stress-rate flexural testing. Dental Material, 2011, 27(4): 364-370.[19] Ramalingam S, Reimanis I E, Fuller E R, et al. Slow crack growth behavior of zirconia-toughened alumina and alumina using the dynamic fatigue indentation technique. Journal of the American Ceramic Society, 2011, 94(2): 576-583.[20] Li J F, Wang S A, Wakabayashi K, et al. Properties of modified lead zirconate titanate ceramics prepared at low temperature (800℃ by hot isostatic pressing. Journal of the American Ceramic Society, 2000, 83(4): 955-957.[21] Li J F, Pan W, Sato F, et al. Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures. Acta Materialia, 2001, 49(6): 937-945.[22] Jiang W, Bai G Z, Wang G, et al. High temperature strength of Mo/PSZ composites as evaluated by MSP test (II). Journal of Inorganic Materials, 2002, 17(5): 1034-1040.[23] Jiang W, Li J F. Compositional dependence of thermal and mechanical properties for sintered Mo/PSZ composites. Acta Metallurgica Sinica, 2002, 38(4): 438-442.[24] Jiang W, Wang G, Wu L B, et al. High temperature strength of Mo/PSZ composities as evaluated by MSP test (I). Journal of Inorganic Materials, 2002, 17(4): 827-832.[25] Li J F, Kawai M, Kikuchi K, et al. Strength proof evaluation of diffusion-jointed W/Ta interfaces by small punch test. Journal of Nuclear Materials, 2003, 321(2/3): 129-134.[26] Wang G, Jiang W, Bai G Z, et al. Effect of additions of oxide on microstructure and BDTT of MoSi2/oxide composites. Composite Materials III(Key Engineering Materials), 2003, 249: 91-95.[27] Xiong Z, Jiang W, Shi Y, et al. Evaluation of high-temperature strength of Mo/PSZ composites by Modified Small Punch tests. Materials Transactions, 2005, 46(3): 631-636.[28] Li J F, Takagi K, Terakubo N, et al. Electrical and mechanical properties of piezoelectric ceramic/metal composites in the Pb(Zr,Ti)O-3/Pt system. Applied Physics Letters, 2001, 79(15): 2441-2443.[29] Zhang H L, Li J F, Zhang B P. Fabrication and evaluation of PZT/Ag composites and functionally graded piezoelectric actuators. Journal of Electroceramics, 2006, 16(4): 413-417.[30] Zhang H L, Li J F, Zhang B P, et al. Enhanced mechanical properties in Ag-particle-dispersed PZT piezoelectric composites for actuator applications. Materials Science and Engineering A, 2008, 498(1/2): 272-277.[31] Zhou D Y, Kamlah M. Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Materialia, 2006, 54(5): 1389-1396.[32] Duiker H M, Beale P D, Scott J F, et al. Fatigue and switching in ferroelectric memories- theory and experiment. Journal of Applied Physics, 1990, 68(11): 5783-5791.[33] Hill M D, White G S, Hwang C S, et al. Cyclic damage in lead zirconate titanate. Journal of the American Ceramic Society, 1996, 79(7): 1915-1920. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%