欢迎登录材料期刊网

材料期刊网

高级检索

采用静电纺丝技术结合后期的热处理制备了具有多孔结构的Ni1-xZnxFe2O4(x=0~0.8)超细纤维. 利用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电镜(FESEM)、低温N2吸附-脱附和振动样品磁强计(VSM)对纤维样品的晶体结构、微观形貌、孔特征和室温磁性能进行了研究. 结果表明, 550℃焙烧2 h得到的多孔Ni1-xZnxFe2O4超细纤维均为单相尖晶石结构, 平均粒径约为25~30 nm, 纤维直径主要分布在200~500 nm之间, 且具有较大的长径比; 所制备的Ni0.5Zn0.5Fe2O4多孔纤维的孔结构主要以狭缝状介孔为主, 其平均孔径约为11 nm; 随着Zn含量x由0增加0.8, Ni1-xZnxFe2O4纤维的晶格常数a线性增大, A位的红外特征振动频率单调递减, 矫顽力由13.8 kA/m逐步减小到2.3 kA/m, 比饱和磁化强度先增大后减小, 在x=0.4时达到最大值66.8 A·m2/kg. 与相近尺寸的Ni-Zn铁氧体纳米粒子相比, Ni-Zn铁氧体超细纤维由于其形状各向异性而表现出更高的矫顽力.

Porous Ni1-xZnxFe2O4 (x=0-0.8) ultrafine fibers were prepared by electrospinning technique and subsequent calcination process. The crystal structure, micromorphology, pore character and room-temperature magnetic properties of the samples were investigated by means of XRD, FTIR, FESEM, low-temperature N2 adsorption-desorption and VSM techniques, respectively. The results show that the obtained porous Ni1-xZnxFe2O4 ultrafine fibers calcined at 550℃ for 2 h are single-phase spinel structure with an average grain size of 25-30 nm. These ultrafibers have diameters in the range of 200–500 nm and a large aspect ratio. N2 adsorption-desorption analysis indicate that the pore structure of as-prepared Ni0.5Zn0.5Fe2O4 porous fibers mainly consists of slit-like mesopores with a mean pore diameter of about 11?nm. With the increase of Zn content (x=0 to x=0.8), the lattice constant of Ni1-xZnxFe2O4 ultrafine fibers increases linearly and complies well with Vegard’s law, and the infrared vibrational frequencies corresponding to tetrahedral sites shift toward lower wavenumber. The coercivity of the samples gradually decreases from 13.8 kA/m (x=0) to 2.3 kA/m (x=0.8), whereas the specific saturation magnetization increases initially, reaches a maximun value of 66.8 A·m2/kg at x=0.4 and then decreases with further increase of Zn content. It is found that the synthesized Ni-Zn ferrite untrafine fibers exhibit relatively high coercivity due to their high shape anisotropy compared with the nanoparticle counterparts with similar size. These porous Ni-Zn ferrite untrafine fibers have potential application in many fields such as sensitive devices, microwave absorbers, and catalysts.

参考文献

[1] LIU Yin, QIU Tai. Synthesis and magnetic properties of nanocrystalline Ni1-xZnxFe2O4 ferrite. Journal of Inorganic Materials, 2007, 22(3): 391-394.

[2] 葛慧琳, 彭志坚, 邢庆凯, 等(GE Hui-Lin, et al). 掺杂的Ni-Zn铁氧体磁性材料的制备与性能. 硅酸盐学报(Journal of the Chinese Ceramic Society), 2010, 38(8): 1383-1387.

[3] 任 利, 张怀武, 苏 桦. NiZn软磁铁氧体材料的性能与应用. 磁性材料与器件, 2005, 36(4): 38-40.

[4] Deka S, Joy P A. Enhanced permeability and dielectric constant of NiZn ferrite synthesized in nanocrystalline form by a combustion method. J. Am. Ceram. Soc., 2007, 90(5): 1494-1499.

[5] Priyadharsini P, Pradeep A, Rao P S, et al. Structural spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites. Mater. Chem. Phys., 2009, 116(1): 207-213.

[6] ZHONG Hai-Sheng, LI Qiang, ZHANG Yi-Ling, et al. Nanocrystalline NiZn ferrite prepared by refluxing method and mechanism of spinel formation. Journal of Inorganic Materials, 2006, 21(6): 1477-1481.

[7] Guo D W, Fan X L, Chai G Z, et al.-Structural and magnetic properties of NiZn ferrite films with high saturation magnetization deposited by magnetron sputtering. Appl. Surf. Sci., 2010, 256(8): 2319-2322.

[8] Wu H, Zhang R, Liu X X, et al. Electrospinning of Fe, Co and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem. Mater., 2007, 19(14): 3506-3511.

[9] Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc., 2005, 127(20): 7316-7317.

[10] Liu J R, Itoh M, Terada M, et al. Enhanced electromagnetic wave absorption properties of Fe nanowires in gigaherz range. Appl. Phys. Lett., 2007, 91(9): 093101-1-3.

[11] Li D, Herricks T, Xia Y N. Magnetic nanofibers of nickel ferrite prepared by electrospinning. Appl. Phys. Lett., 2003, 83(22): 4586-4588.

[12] Wang Z L, Liu X J, Lv M F, et al. Preparation of one-dimensional CoFe2O4 nanostructures and their magnetic properties. J. Phys. Chem. C, 2008, 112(39): 15171-15175.

[13] Liu F F, Li X Y, Zhao Q D, et al. Structural and photovoltaic properties of highly ordered ZnFe2O4 nanotube arrays fabricated by a facile Sol-Gel template method. Acta Mater., 2009, 57(9): 2684-2690.

[14] Wang J, Chen Q W, Zeng C, et al. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater., 2004, 16(2): 137-140.

[15] Huang Z B, Zhang Y Q, Tang F Q. Solution-phase synthesis of single-crystalline magnetic nanowires with high aspect ratio and uniformity. Chem. Commun., 2005(3): 342-344.

[16] He K, Xu C Y, Zhen L, et al. Hydrothermal synthesis and characterization of single-crystalline Fe3O4 nanowires with high aspect ratio and uniformity. Mater. Lett., 2007, 61(14/15): 3159-3162.

[17] Li Q L, Wang W T, Wang Y F. Fabrication and characterization of Ni0.5Zn0.5Fe2O4 nanofibers. J. Alloys Compd., 2010, 494(1/2): 315-318.

[18] 崔启征, 董相廷, 于伟利, 等(CUI Qi-Zheng, et al). 静电纺丝技术制备无机物纳米纤维的最新研究进展. 稀有金属材料与工程(Rare Metal Mat. Eng.), 2006, 35(7): 1167-1171.

[19] Ju Y W, Park J H, Jung H R, et al. Electrospun MnFe2O4 nanofibers: Preparation and morphology. Compos. Sci. Technol., 2008, 68(7/8): 1704-1709.

[20] Maensiri S, Sangmanee M, Wiengmoon A. Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett., 2009, 4(3): 221-228.

[21] LIU Ming-Quan, SHEN Xiang-Qian, MENG Xian-Feng, et al. Fabrication and magnetic property of M-type strontium ferrite nanofibers by electrospinning. Journal of Inorganic Materials, 2010, 25(1): 68-72.

[22] Xiang J, Shen X Q, Song F Z, et al. Fabrication and magnetic properties of Ni0.5Zn0.5Fe2O4 nanofibres by electrospinning. Chin. Phys. B, 2009, 18(11): 4960-4965.

[23] 向 军, 宋福展, 沈湘黔, 等(XIANG Jun, et al). 一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能. 物理学报(Acta Physica Sinica), 2010, 59(7): 4794-4801.

[24] 李巧玲, 常传波(LI Qiao-Ling et al). 针状纳米NixZn1-xFe2O4的制备及磁性能. 化学学报(Acta Chimica Sinica), 2010, 68(14): 1385-1390.

[25] Zhang Y, Jiao Q G, Zhai Y, et al. Magnetic properties and structure of nano-size NiZn ferrite synthesized by the refluxing co-precipitation method. Mod. Phys. Lett. B, 2009, 23(4): 633-642.

[26] Zhang H E, Zhang B F, Wang G F, et al. The structure and magnetic properties of Zn1-xNixFe2O4 ferrite nanoparticles prepared by Sol-Gel auto-combustion. J. Magn. Magn. Mater., 2007, 312(1): 126-130.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%