利用电泳沉积法在Φ50 μm的铂金丝上制备了厚度约50 μm的0.2Pb(Ni1/3Nb2/3)O3-(0.8-x)PbTiO3-xPbZrO3 (PNN-PZT)致密压电陶瓷厚膜. 研究了不同聚合度的分散剂聚乙二醇(PEG)对悬浮液的Zeta电势和厚膜表面形貌的影响.结果显示, 加入高聚合度的分散剂PEG10000所制得的悬浮液比加入低聚合度的分散剂PEG6000制得的悬浮液更稳定, 并且电泳沉积得到的厚膜也更加致密. 本研究解释了不同聚合度的PEG对悬浮液稳定的可能原因, 并比较了连续电泳沉积法与分步电泳沉积法对厚膜表面形貌的影响, 结果表明采用分步电泳沉积法制备的厚膜更加致密. 研究了不同的烧结温度对PNN-PZT厚膜形貌和介电性能的影响, 结果显示烧结温度为1180℃时, 厚膜的介电性能最好, 介电常数达988, 介电损耗为3.7%. 测试了1180℃烧结的PNN-PZT厚膜的电压位移曲线和电滞回线, 结果表明厚膜的有效压电常数为90 pm/V,剩余极化为6.00 kV/cm.
0.2Pb(Ni1/3Nb2/3)O3-(0.8-x)PbTiO3-xPbZrO3 (PNN-PZT) dense piezoelectric thick films with the thickness of about 50 μm were fabricated by electrophoretic deposition(EPD) on Pt wire. Effects of different dispersants to the Zeta potential of the suspension and the microstructures of the PNN-PZT thick films were evaluated. The results shows that suspension with polyethyleneglycol 10000 is more stable than the suspension with polyethyleneglycol 6000, and the thick films deposited from suspension with polyethyleneglycol 10000 is more denser. The effects of different dispersants on the stability of the suspension and the influences of different deposition methods on the microstructures of the thick films were discussed. The result shows that dense thick films can be fabricated by stepwise deposition. The effect of different sintering temperatures to the dielectric constant and the dielectric loss of PNN-PZT thick films at room temperature were investigated. The dielectric constant and the dielectric loss at room temperature of the PNN-PZT thick film sintered at 1180℃ for 30 min are 988 and 3.7% respectively. The electric induced displacement (E-D) curve and hysteresis loop of the PNN-PZT thick films were measured. The effective piezoelectric constant and the residual polarization of the PNN-PZT films are 90 pm/V and 6.00 kV/cm, respectively.
参考文献
[1] | |
[2] | 张瑞芳, 张和平. 电泳沉积法制备PZT压电陶瓷管. 硅酸盐通报, 2005, (4): 20-23.[2] Liou Yi-Cheng, Chen Jen-Hsien, Huang Yi-Chen, et al. Synthesis of Pb(Ni1/3Nb2/3)0.72Ti0.28O3 perovskite ceramics by a reaction-sintering process. Electro. Ceram., 2006, 16(3): 213-220.[3] Xiang Ping-Hua, Zhong Ni, Dong Xian-Lin. Single-calcination synthesis of pyrochlore-free Pb(Ni1/3Nb2/3)O3-PbTiO3 using a coating method. Solid State Communications, 2003, 127(11): 699-701.[4] Zhu Xinhua, Xu Jie, Meng Zhongyan, et al. Microdisplacement characteristics and microstructures of functionally graded piezoelectric ceramic actuator. Materials and Design, 2000, 21(6): 561-566.[5] Lei Chao, Chen Kepi, Zhang Xiaowen, et al. Study of the structure and dielectric relaxation behavior of Pb(Ni1/3Nb2/3)-PbTiO3 ferroelectric ceramics. Solid State Communications, 2002, 123(10): 445-450.[6] Masao Kondo, Masaharu Hida, Koji Omote, et al. Preparation of PbNi1/3Nb2/3O3-PbTiO3-PbZrO3 ceramic multilayer actuator with silver internal electrodes. Sensors and Actuators A, 2003, 109(1): 143-148.[7] Goldberg H D, Brown R B, Liu D P, et al. Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays. Sensors and Actuators B, 1994, 21(3): 171-183.[8] Kim Sang-Jong, Kang Chong-Yun, Choi Ji-Won, et al. Properties of piezoelectric actuator on silicon membrane, prepared by screen printing method. Materials Chemistry and Physics, 2005, 90(2/3): 401-404.[9] Hu Tao, Heli Jantunen, Antti Uusimaki, et al. BST powder with Sol-Gel process in tape casting and firing. Journal of the European Ceramic Society, 2004, 24(6): 1111-1116.[10] Snel M D, de With, Snijkers G F, et al. Aqueous tape-casting of reaction bonded aluminium oxide (RBAO). Journal of the European Ceramic Society, 2007, 27(1): 27-33.[11] Ng S Y, Boccaccini A R. Lead zirconate titanate -lms on metallic substrates by electrophoretic deposition. Materials Science and Engineering B, 2005, 116(2): 208-214. [12] Su B, Ponton C B, Button T W. Hydrothermal and electro-phoretic deposition of lead zirconate titanate (PZT) films. Journal of the European Ceramic Society, 2001, 21(10/11): 1539-1542.[13] Chen Jin, Fan Huiqing, Ke Shanming, et al. Fabrication of pyrochlore-free PMN&ndash |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%