欢迎登录材料期刊网

材料期刊网

高级检索

通过简单两步法在金属锌表面构筑超疏水薄膜,锌片首先经N,N-二甲基甲酰胺(DMF)处理在表面构筑微纳结构薄膜,然后在表面覆盖硬脂酸薄膜以实现超疏水.采用扫描电子显微镜,傅里叶红外光谱仪和接触角测量仪等手段表征了超疏水表面的形成机制和表面形貌,并利用微纳米摩擦磨损试验机研究了超疏水薄膜的减摩耐磨特性.研究结果发现,在锌表面形成了一层纳米棒状结构的超疏水薄膜,水的接触角可达155°.超疏水薄膜具有明显的减摩和耐磨特性,这可归因于DMF处理导致的表面微织构化效应以及脂肪酸自组装薄膜的纳米润滑效应.

参考文献

[1] Liu M,Jiang L.Switchable adhesion on liquid/solid interfaces.Adv.Funct.Mater.,2010,20(21):3753-3764.
[2] 崔晓松,姚希,刘海华,等.超疏水表面微纳结构设计与制备及润湿行为调控(Ⅰ).中国材料进展,2009,28(12):41-52.
[3] Guo Z,Liu W,Su B L.Superhydrophobic surfaces:from natural to biomimetic to functional.J.Colloid.Interface.Sci.,2011,353(2):335-355.
[4] DI Zhi-Yong,HE Jian-Ping,ZHOU Jian-Hua,et al.Fabrication and anticorrosion property of superhydrophobic surfaces with hierarchical structure through an organic-inorganic self-assemble process.Journal of Inorganic Materials,2010,25(7):765-769.
[5] Xue C H,Jia S T,Zhang J,et al.Large-area fabrication of superhydrophobic surfaces for practical applications:an overview.Sci.Technol.Adv.Mater.,2010,11(3):033002-1-15.
[6] Qu M,Zhang B,Song S,et al.Fabrication of superhydrophobic surfaces on engineering materials by a solution-immersion process.Adv.Funct.Mater.,2007,17(4):593-596.
[7] 刘通,刘涛,陈守钢,等(LIU Tong,et al).超疏水表面改善铝基材料的抗海水腐蚀性能.无机化学学报(Chinese Journal of Inorganic Chemistry),2008,24(11):1859-1863.
[8] Luo Z Z,Zhang Z Z,Hu L T.Stable bionic superhydrophobic coating surface fabricated by a conventional curing process.Adv.Mater,2008,20(5):970-974.
[9] Larmour I A,Bell S E J,Saunders G C.Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition.Angew.Chem.Int.Ed.,2007,46(10):1710-1712.
[10] Liu H,Szunerits S,Xu W,et al.Preparation of superhydrophobic coatings on zinc as effective corrosion barriers.Appl.Mater Interfaces,2009,1(6):1150-1153.
[11] Wan Y,Wang Z,Xu,Z,et al.Fabrication and wear protection performance of superhydrophobic surface on zinc.Appl.Surf.Sci.,2011,257(17):7486-7489.
[12] Feng L,Zhang H,Mao P,et al.Superhydrophobic alumina surface based on stearic acid modification.Appl.Surf.Sci,2011,257(9):3959-3963.
[13] Hong Y C,Cho S C,Shin D H,et al.A facile method for the fabrication of super-hydrophobic surfaces and their resulting wettability.Scripta Mater.,2008,59(7):776-779.
[14] Wang S,Feng L,Jiang L.One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces.Adv.Mater.,2006,18(6):767-770.
[15] Wang Q,Zhang B,Qua M,et al.Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid.Appl.Surf.Sci.,2008,254(7):2009-2012.
[16] Dowson D.History of Tribology.London:Professional Engineering Publishing,1998.
[17] Lundgren S M,Ruths M,Danerl(o)v K,et al.Effects of unsaturation on film structure and friction of fatty acids in a model base oil.J.Colloid Interface Sci.,2008,326(2):530-536.
[18] Sahoo R R,Biswas S K.Frictional response of fatty acids onsteel.J.Colloid Interface Sci.,2009,333(2):707-718.
[19] Zhang Z,Yu H,Shao X,et al.Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal.Chem.Eur.J.,2005,11(10):3149-3154.
[20] Hou X,Zhou F,Yu B,et al.Superhydrophobic zinc oxide surface by differential etching and hydrophobic modification.Mate.Sci.Eng.A,2007,452-453:732-736.
[21] Laibinis P E,Hickman J J,Wrighton M S,et al.Orthogonal systems for self-assembled monolayers:alkanethiols on gold and slkane carboxylic acids on alumina.Science,1989,245(4920):845-847.
[22] Cassie A B D,Baxter S.Wettability of porous surfaces.Trans.Faraday.Soc.,1944,40:546-551.
[23] Raman A,Quinones R,Barriger L,et al.Understanding organic film behavior on alloy and metal oxides.Langmuir,2010,26(3):1747-1754.
[24] Raman A,Gawalt E S.Self-assembled monolayers of alkanoic acids on the native oxide surface of SS316L by solution deposition.Langmuir,2007,23(5):2284-2288.
[25] Shustak G,Domb A J,Mandler D.Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel.Langmuir,2004,20(18):7499-7506.
[26] Bowden F P,Tabor D.The Friction and Lubrication of Solids.London:Oxford University Press,2001.
[27] Johnson K L,Kendall K,Roberts A D.Surface energy and the contact of elastic solids.Proc.R.Soc.London,Ser.A,1971,324(1558):301-313.
[28] Beake B D,Leggett G I.Variation of frictional forces in air with the compositions of heterogeneous organic surfaces.Langmuir,2000,16(2):735-739.
[29] Yoon E S,Singh R A,Oh H J,et al.The effect of contact area on nano/micro-scale friction.Wear,2005,259(12):1424-1432.
[30] Singh R A,Yoon E S,Kim H J,et al.Enhanced tribological properties of lotus leaf-like surfaces fabricated by capillary force lithography.Surf.Eng.,2007,23(3):161-164.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%