欢迎登录材料期刊网

材料期刊网

高级检索

研究了铋离子掺杂磷铝酸盐玻璃近红外发光与光学碱度的反常现象.研究发现,通过改变碱金属离子半径调节玻璃基质光学碱度,在808 nm激光激发下铋离子位于1300 nm波段的近红外宽带发光强度随光学碱度的增大而增强,而在690 nm激光激发下得到的1100 nm波段近红外发光强度则随着光学碱度的增大而减弱.该玻璃1300 nm波段近红外发光强度与光学碱度依存关系与以往报道结果相反,且也与1100 nm波段发光特性相反.根据上述结果可以推测玻璃中1100和1300 nm波段的近红外发光源于不同价态的铋离子,而该玻璃体系的基质结构自还原作用是导致上述现象产生的主要原因.

参考文献

[1] Fujimoto Y,Nakatsuka M.Optical amplification in bismuth-doped silica glass.Appl.Phys.Lett.,2003,82(19):3325-3326.
[2] Fujimoto Y, Nakatsuka M. Infrared luminescence from bismuth-doped silica glass.Jpn.J.Appl.Phys.,2001,40:279-281.
[3] XU Jun,SU Liang-Bi.Main-group metal ions doped materials-a new developing direction of laser materials.Journal ofInorganic Materials,2011,26(4):347-353.
[4] Peng M Y,Chen D P,Qiu J,et al.Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence.Opt.Mater.,2007,29(5):556-561.
[5] Arai Y,Suzuki T,Ohishi Y,et al.Ultrabroadband near-infrared emission from a colorless bismuth-doped glass.Appl.Phys.Lett.,2007,90(26):261110-1-3.
[6] Peng M Y,Wu B T,Da N,et al.Bismuth-activated luminescent materials for broadband optical amplifier in WDM system.J.Non-Cryst.Solids,2008,354(12/13):1221-1225.
[7] Peng M Y,Qiu J R,Chen D P,et al.Bismuth-and aluminumcodoped germanium oxide glasses for super-broadband optical amplification.Opt.Lett.,2004,29(17):1998-2000.
[8] Peng M Y,Qiu J R,Chen D P,et al.Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses.Opt.Lett.,2005,30(18):2433-2435.
[9] Meng X G,Qiu J R,Peng M Y,et al.Near infrared broadband emission of bismuth-doped ahminophosphate glass.Opt.Express,2005,13(5):1628-1634.
[10] Meng X G,Qiu J R,Peng M Y,et al.Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses.Opt.Express,2005.13(5):1635-1642.
[11] Hughes M A,Akada T,Suzuki T.Ultrabroad emission from a bismuth doped chalcogenide glass.Opt.Express,2009,17(22):1934,5-19355.
[12] 王雪俊,夏海平(WANG Xue-Jun,et al).Bi离子掺杂G eO2-Al2O3-M(M=Na2O,BaO,Y2O3)玻璃的光学性质.物理学报(Acta Phys.Sinica),2006,55(10):5623-5626.
[13] Khonthon S,Morinoto S,Arai Y,et al.Luminescence characteristics of Te-and Bi-doped glasses and glass-ceramics.J.Ceram.Society Jpn.,2007,115(4):259-263.
[14] Sokolov V O,Plotnichenko V G,Dianov E M.Origin of broadband near-irfrared luminescence in bismuth-doped glasses.Opt.Lett.,2008,33(13):1488-1490.
[15] Duffy J A.Redox equilibria in glass.J.Non-Cryst.Solids,1996,196:45-50.
[16] Pen J J,Qiu J R,Wu B T,et al.Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses.J.Mater.Res.,2007,22(6):1574-1578.
[17] Zhou S F,Feng G F,Bao J X,et al.Broadband near-infrared emission from Bi-doped aluminosilicate glasses.J.Mater.Res.,2007,22(6):1435-1438.
[18] Chi G W,Zhou D C,Song Z G,et al.Effect of optical basicity on broadband infrared fluorescence in bismuth-doped.Opt.Mater.,2009,31(6):945-948.
[19] Hughes M,Suzuki T,Ohishi Y.Advanced bismuth-doped lead-germanate glass for broadband optical gain devices.J.Opt.Soc.Am.B:Opt.Phys.,2008,25(8):1380-1386.
[20] Song Z G,Yang Z W,Zhou D C,et al.The effect of P2O5 on the ultra broadband near-infrared luminescence from bismuth-doped SiO2-Al2O3-CaO glass.J.Lumin.,2011,131(12):2593-2596.
[21] 苏锵,曾庆华,裴治武(SU Qiang,et al).在空气下制备掺二价稀土的硼酸盐及二价稀土离子(RE2+=Sm,Eu,Tm,Yb)的光谱特征.无机化学学报(Chinese J.Inorg.Chem.),2000,16(2):294-298.
[22] Lian Z H,Wang J,Lv Y H,et al.The reduction of Eu3+ to Eu2+ in air and luminescence properties of Eu2+ activated ZnO-B2O3-P2O5glasses.J.Alloys Compd.,2007 430(1/2):257-261.
[23] Liu S M,Zhao G L,Ruan W L,et al.Reduction of Eu3+ to Eu2+ in aluminoborosilicate glasses prepared in air.J.Am.Ceram.Soc.,2008,9(8):2740-2742.
[24] Pircs A M,Davolos M R.Luminescence of europium(Ⅲ) andmanganese(Ⅱ) in barium and zinc orthosilicate.Chem.Mater.,2001,13(1):21-27.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%