欢迎登录材料期刊网

材料期刊网

高级检索

研究了AgInSbTe相变薄膜作为一种新的热刻蚀材料的腐蚀特性。采用射频磁控溅射的方法在室温下制备了非晶态AgInSbTe薄膜, 经真空加热退火晶化. 以氢氧化钠溶液作为腐蚀剂, 研究了退火温度、腐蚀剂浓度、腐蚀时间对晶态、非晶态 AgInSbTe薄膜腐蚀特性的影响. 结果表明: 以非晶态形式存在的沉积态AgInSbTe薄膜在0.001 mol/L氢氧化钠溶液中腐蚀速度小于0.04 nm/min, 退火晶化后, 薄膜的腐蚀速度大幅度提高, 晶态和非晶态薄膜的腐蚀选择比随退火温度的升高而增大. 当腐蚀时间为20 min时, 经300℃真空退火的晶态AgInSbTe薄膜比相应非晶态的腐蚀速度高45倍以上. 腐蚀后薄膜表面质量良好(粗糙度<1 nm, 10 μm×10 μm区域). 并对AgInSbTe相变薄膜的腐蚀机理进行了讨论.

The etching characteristics of the AgInSbTe phase change film as a new thermal lithography material were studied. The amorphous AgInSbTe film was deposited by using radio frequency magnetron sputtering method at room temperature, and then crystallized by vacuum-annealing. Using sodium hydroxide aqueous solution as etchant, influences of annealing temperature, etchant concentration and etching time on etching properties of the amorphous and crystalline AgInSbTe films were investigated. Experimental results indicate that the etching rate of the amorphous AgInSbTe film is lower than 0.04 nm/s in 0.001 mol/L sodium hydroxide solution. After vacuum-annealing, the etching rate of the film increases markedly and the etching selectivity between the crystalline and amorphous films increases with the increase of the annealing temperature. At the etching time of  20 min, the etching rate of the crystalline AgInSbTe film annealed at 300℃ is 45 times higher than that of the amorphous film. The surface quality of the AgInSbTe film after etching is good, and the surface roughness is less than 1nm in the area of 10 μm×10 μm. The wet-etching mechanism of the AgInSbTe film in sodium hydroxide solution is discussed.

参考文献

[1] Kuwahara M, Li J M, Mihalcea C, et al. Thermal lithography for 100nm dimensions using a nano-heat spot of a visible laser beam. Jpn. J. Appl. Phys., 2002, 41(9A/B): L1022-L1024.

[2] Kouchiyama A, Aratani K, Takemotoi Y, et al. High-resolution blue-laser mastering using an inorganic photoresist. Jpn. J. Appl. Phys., 2003, 42(2B): 769-771.

[3] Liu C P, Huang Y X, Hsu C C, et al. Nanoscale fabrication using thermal lithography technique with blue laser. IEEE Trans. Magn., 2009, 45(5): 2206-2208.

[4] Ito E, Kawaguchi Y, Tomiyama M, et al. TeOx-based film for heat-mode inorganic photoresist mastering. Jpn. J. Appl. Phys., 2005, 44(5B): 3574-3577.

[5] Miura H, Toyoshima N, Hayashi Y, et al. Patterning of ZnS-SiO2 by laser irradiation and wet etching. Jpn. J. Appl. Phys., 2006, 45(2B): 1410-1413.

[6] Shintani T, Anzai Y, Minemura H, et al. Nanosize fabrication using etching of phase-change recording films. Appl. Phys. Lett., 2004, 85(4): 639-641.

[7] Liu C P, Hsu C C, Jeng T R, et al. Enhancing nanoscale patterning on Ge-Sb-Sn-O inorganic resist film by introducing oxygen during blue laser-induced thermal lithography. J. Alloys Compd., 2009, 488(1): 190-194.

[8] Yusu K, Yamamoto R, Matsumaru M, et al. Transition mechanism of WOx available for optical disc by laser irradiation. Jpn. J. Appl. Phys., 2009, 48(3): 03A068.

[9] Kurihara K, Yamakawa Y, Nakano T, et al. High-speed optical nanofabrication by platinum oxide nano-explosion. J. Optics A, 2006, 8(4): S139-S143.

[10] Shinotsuka M, Shibaguchi T, Abe M, et al. Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical discs. Jpn. J. Appl. Phys., 1997, 36(1B): 536-538.

[11] Shinotsuka M, Onagi N, Harigaya. High-density and high-data- transfer-rate optical disk with blue laser diode and Ag-In-Sb-Te phase-change material. Jpn. J. Appl. Phys., 2000, 39(2B): 976-977.

[12] Li J Y, Gan F X. Optical properties of Ag8In14Sb55Te23 phase-change films. Thin Solid Films, 2002, 402(1/2): 232-236.

[13] Yin Y, Sone H, Hosaka S. Dependences of electrical properties of thin GeSbTe and AgInSbTe films on annealing. Jpn. J. Appl. Phys., 2005, 44(8): 6208-6212.

[14] Zhai F X, Zuo F Y, Huang H, et al. Optical-electrical properties of AgInSbTe phase change thin films under single picosecond laser pulse irradiation. J. Non-Crystalline Solids, 2010, 356(18/19): 889-892.

[15] Borg H J, Blom P W M, Jacobs B A J, et al. AgInSbTe materials for high-speed phase change recording. Joint International Symposium on Optical Memory and Optical Data Storage, 1999, 3864: 191-193.

[16] Lankhorst M, Ketelaars H R, Wolters R A M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nature Materials, 2005, 4(4): 347-352.

[17] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nature Materials, 2007, 6(12): 824-832.

[18] Kalb J, Spaepen F, Wuttig M. Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys. Appl. Phys. Lett., 2004, 84(25): 5240-5242.

[19] Iwasaki H, Harigaya M, Nonoyama O, et al. Completely erasable phase-change optical disc Ⅱ: application of Ag-in-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity. Jpn. J. Appl. Phys., 1993, 32(11B): 5241-5247.

[20] Matsunaga T, Umetani Y, Yamada N. Structural study of a Ag3.4In3.7Sb76.4Te16.5 quadruple compound utilized for phase-change optical disks. Physical Review B, 2001, 64(18): 184116.

[21] Gan F X, Hou L S, Wang G. B, et al. Optical and recording properties of short wavelength optical storage materials. Mater. Sci. Eng. B, 2000, 76(1): 63-68.

[22] Jiao X B, Wei J S, Gan F X, et al. Temperature dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials. Appl. Phys. A, 2009, 94(3): 627-631.

[23] Orava J, Wagner T, Krbal A, et al. Selective wet-etching and characterization of chalcogenide thin films in inorganic alkaline solutions. J. Non-Crystalline Solids, 2007, 353(13/14/15): 1441-1445.

[24] Orava J, Wagner T, Krbal M, et al. Selective wet-etching of undoped and silver photodoped amorphous thin films of chalcogenide glasses in inorganic alkaline solutions. J. Non-Crystalline Solids, 2006, 352(9-20): 1637-1640.

[25] Anzai Y, Shintani T, Minemura H, et al. Macroscopic study on etching characteristics of phase-change recording films. http://www.epcos.org/library/papers/pdf_2004/20paper_anzai.pdf, 6 (2004), 1(1):1-10.

[26] Cheng H Y, Jong C A, Chung R J, et al. Wet etching of Ge2Sb2Te5 films and switching properties of resultant phase change memory cells. Semicond. Sci. Technol., 2005, 20(11): 1111-1115.

[27] 杨宏孝, 凌 芝, 颜秀茹. 无机化学, 3版. 北京: 高等教育出版社, 2000, 1(1): 38.

[28] 杨久俊. 无机材料科学. 郑州: 河南科学出版社, 1997: 299.

[29] Cheng H Y, Jong C A, Lee C M, et al. Wet-etching characteristics of Ge2Sb2Te5 thin films for phase-change memory. IEEE Trans. Magn., 2005, 41(2): 1031-1033.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%