分别以阴、阳离子表面活性剂和聚合物作为表面修饰剂, 以四氯乙烯、十二烷基苯和Isopar H作为分散介质, 研究纳米TiO2电泳粒子表面荷电性质及其荷电量的可控制备. 研究结果表明,阳离子表面活性剂修饰的TiO2粒子的ξ电位在四氯乙烯中呈负性, 在十二烷基苯和Isopar H中呈正性; 阴离子表面活性剂的修饰产物则相反. 进一步研究了十二烷基苯磺酸钠、十六烷基三甲基溴化铵和苯乙烯/二乙烯苯修饰的TiO2粒子体系中电荷控制剂的浓度对TiO2粒子荷电量的影响. 结果表明TiO2电泳粒子的ξ电位在电荷控制剂的临界胶束浓度附近存在极小值, 并随着浓度的增加而有规律地变化, 但荷电性质不改变. 根据这一规律可实现对粒子表面电荷的可控制备.
Preparation of TiO2 nano-particles with controllable surface charges for electrophoretic display was investigated in ethylene tetrachloride, Isopar H and dodecylbenzene, in which TiO2 nano-particles were modified by anionic surfactants, cationic surfactants and polymers, respectively. The research results showed that TiO2 nano-particles modified by cationic surfactants had negative charges in ethylene tetrachloride, while it had positive charges in Isopar H and dodecylbenzene, the nano-particles modified by anionic surfactants had the opposite character. The influence of concentration of charge control agents on TiO2 nano-particles surface charges was discussed, in which TiO2 nano-particles were modified by sodium dodecylbenzenesulphonate, hexadecyl trimethyl ammonium bromide and styrene/divinylbenzene, respectively. It was shown that ξ potential of TiO2 nano-particles had a minimum value near the critical micelle concentrations of the charge control agents, and a regular change with the increasing concentration, while the property of ξ potential was still maintained. So, preparation of controllable surface charges of TiO2 nano-particles can be achieved.v
参考文献
[1] | Rosen L A, Baygents J C, Saville D A. The interpretation of dielectric response measurements on colloidal dispersions using the dynamic Stern layer model. J. Chem. Phys., 1993, 98(5): 4183-4194. [2] Lee Soon P, Jin Woo P, Hae Yun C, et al. Fabrication of charged particles for electrophoretic display. Current Applied Physics, 2006, 6(4): 644-648.[3] Hyoung Jin C, Jeong Hyun P, Mi Ah L, et al. Preparation and electrophoretic response of poly (methyl methacrylateco-methacrylic acid) coated TiO2 nanoparticles for electronic paper application. Current Applied Physics, 2007, 7(4): 349-351.[4] Chung C J, Jean J H. Dispersion of titania powder in an electronic ink for electrophoretic display. Journal of the American Ceramic Society, 2007, 90(11): 3490-3495.[5] YAO Chao, GAO Guo-Sheng, LIN Xi-Ping, et al. Surface modification of nanosized TiO2 with silane coupling reagent.-Journal of Inorganic Materials, 2006, 21(2): 315-321.[6] WANG Bao-Xiang, ZUO Zhao-Yang, ZHAO Xiao-Peng. Electrorheological effect of titania-coated kaolinite nanocomposite particles. Journal of Inorganic Materials, 2004, 19(3): 492-496.[7] Choi H J, Lee J Y, Sung J H, et al. Electrophoretic response of Poly(methyl methacrylate) coated TiO2 nanoparticles. Synthetic Metals, 2005, 153(1/2/3): 221-224.[8] Wang J, Feng Y Q, Li X G, et al. Surface modification of nanometer TiO2 and effect of preparing TiO2/P(St-co-DVB) composites by dispersion polymerization. Transaction of Tianjin University, 2006, 12(4): 252-257.[9] Hideyuki K. Method of Producing Display Panel and Display Panel. US, 6583780 B1. 2003-08-16.[10] Chopra N, Keoshkerian B, Kazmaier P M, et al. Electrophoretic Display Medium Containing Solvent Resistant Emulsion Aggregation Particles. US, 7349147 B2. 2008-03-25.[11] Miyazawa Takashi. Method of Manufacturing Charged Particle, Electrophoretic Dispersion Liquid, Electrophoretic Sheet, Electrophoretic Device and Electronic Equipment. US, 0195402 A1. 2007-08-23.[12] Jacobson Joseph M. Heterogeneous Display Elements and Methods for Their Fabrication. US, 6241921 B1. 2001-06-05.[13] Ohshima H. Approximate analytic expression for the electrophoretic mobility of a spherical colloidal particle. Journal of Colloid and Interface Science, 2001, 239: 587-590. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%