采用静电纺丝技术与溶剂热法相结合制备了γ-Bi2O3/TiO2 复合纤维光催化材料. 利用X射线衍射(XRD)、扫描电镜(SEM)、电子能谱(EDS)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和紫外–可见吸收光谱(UV-Vis)等分析测试手段对材料进行了表征, 并以罗丹明B(RB)的脱色降解为模式反应, 考察了材料的可见光催化性能. 结果表明: γ-Bi2O3纳米片均匀地生长在TiO2纤维上, 形成了具有异质结构的γ-Bi2O3/TiO2复合纤维光催化材料, 其光谱响应范围拓宽至可见光区, 有利于TiO2光生电子和空穴的分离, 增强了体系的量子效率. 与纯TiO2纤维相比可见光催化活性明显提高, 对RB的脱色率达87.8%.
Heterostructured γ-Bi2O3/TiO2 composite fibers were prepared via combination of solvothermal method and electrospinning technique. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscope (EDS), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) and UV-Vis absorption spectra were used to characterize heterostructured γ-Bi2O3/TiO2 composite fibers. The photocatalytic properties of the heterostructured samples were evaluated by degrading rhodamine B (RB) under visible light irradiation. The results showed that γ-Bi2O3 nanosheets could evenly grow on the TiO2 fibers surface and thus heterostructured γ-Bi2O3/TiO2 composite fibers were successfully obtained. The absorption range of the as-obtained heterostructured samples were extended to the visible light region. Moreover, the presence of γ-Bi2O3 nanostructures/TiO2 fibers heterostructures was beneficial to separation of photo-generated electrons and holes which enhanced the system’s quantum efficiency. In comparison with that of pure TiO2 nanofibers, the γ-Bi2O3/TiO2 heterostructures have enhanced photocatalytic efficiency under visible light irradiation, and the decolorizing efficiency of RB solution can reach 87.8%.
参考文献
[1] | |
[2] | |
[3] | |
[4] | |
[5] | |
[6] | |
[7] | |
[8] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38.[2] Fujishima A, Zhang X T, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63(12): 515-582.[3] Chen X B, Shen S H, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev., 2010, 110(11): 6503-6570.[4] ZHOU Wen-Qian, LU Yu-Ming, CHEN Chang-Zhao, et al.Effect of Li-doped TiO2 compact layers for dye sensitized solar cell. Journal of Inorganic Materials, 2011, 26(8): 819-822. [5] Cao T P, Li Y J, Shao C L, et al. Fabrication, structure, and enhanced photocatalytic properties of hierarchical CeO2 nanostructures/TiO2 nano-bers heterostructures. Materials Research Bulletin, 2010, 45(10): 1406-1412.[6] Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev, 2007, 107(7): 2891-2959.[7] Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. effect of metal particle size on the fermi level equilibration. J. Am. Chem. Soc., 2004, 126(15): 4943-4950.[8] Cabot A, Marsal A, Arbiol J, et al. Bi2O3 as a selective sensing material for NO detection. Sensors and Actuators B, 2004, 99(1): 74-89.[9] Drache M, Roussel P, Wignacourt J P. Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3. Chem. Rev., 2007, 107(1): 80-96.[10] Harwig H A, Gerards A G. Electrical properties of the &alpha |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%