欢迎登录材料期刊网

材料期刊网

高级检索

以不同配比的Y2O3-Al2O3为烧结助剂,通过添加3wt%的单分散β-Si3N4籽晶,采用气压烧结制备了氮化硅陶瓷,并对所得材料的相组成、密度、室温和高温力学性能及显微结构进行了研究.结果表明:不同烧结助剂配比的α-Si3N4粉体在1800℃保温2h即全部转化为β-Si3N4,且各烧结体的相对密度都达到了97%以上.在6wt%Y2O和4.5wt%Al2O3为烧结助剂时,添加3wt%籽晶的样品其室温强度和1200℃高温强度分别提高了20%和16%,断裂韧性提高了8%.

参考文献

[1] Wiederhorn S M,Ferber M K.Silicon nitride for gas turbines.Current Opinion in Solid State and Materials Science,2001,5(4):311-316.
[2] Wang B,Yang J,Guo R,et al.Microstructure characterization of hot-pressed β-silicon nitride containing β-Si3N4 seeds.Materials Characterization,2009,60(8):894-899.
[3] Imamura H,Hirao K,Brito M E,et al.Further improvement in mechanical properties of highly anisotropic silicon nitride ceramics.Journal of the American Ceramic Society,2000,83(3):495-500.
[4] Vuckovic A,Boskovic S,Matovic B,et al.Effect of β-Si3N4 seeds on densification and fracture toughness of silicon nitride.Ceramics International 2006,32(3):303-307.
[5] Taguchi S P,Motta F V,Balestra R M,et al.Wetting behaviour of SiC ceramics.Ⅱ.Y2O3/Al2O3 and Sm2O3/Al2O3.Materials Letters,2004,58(22):2810-2814.
[6] Sarin V K.On the α to β phase transformation in silicon nitride.Materials Science and Engineering:A,1988,105:151-159.
[7] Goto Y,Thomas G.Phase transformation and microstructural changes of Si3N4 during sintering.Journal of Materials Science,1995.30(9):2194-2200.
[8] Yang J F,Ohji T,Niihara K.Influence of yttria-alumina content on sintering behavior and micrcetructure of silicon nitride ceramics.Journal of the American Ceramic Society,2000,83(8):2094-2096.
[9] Lee D D,Kang S J L,Petzow G,et al.Effect of α to β (β') phase transition on the sintering of silicon nitride ceramics.Journal of the American Ceramic Society,1990,73(3):767-769.
[10] De Pablos A,Osendi M I,Miranzo P.Correlation between microstructure and toughness of hot pressed Si3N4 ceramics seeded with β-Si3N4 particles.Ceramics International,2003,29(7):757-764.
[11] Hirao K,Nagaoka T,Brito M E,et al.Microstructure control of silicon nitride by seeding with rodlike β-silicon nitride particles.Journal of the American Ceramic Society,1994,77(7):1857-1862.
[12] Lee J S,Mun J H,Han B D,et al.Effect of β-Si3N4 seed particles on the property of sintered reaction-bonded silicon nitride.Ceramics International,2003,29(8):897-905.
[13] Lu H H,Huang J L.Microstructure in silicon nitride containing β-phase seeding:Part Ⅰ.Journal of Materials Research,1999,14(7):2966-2973.
[14] Becher P F.Microstructural design of toughened ceramics.Journal of the American Ceramic Society,1991,74(2):255-269.
[15] Fünfschilling S,Fett T,Hoffmann M J,et al.Mechanisms of toughening in silicon nitrides:The roles of crack bridging and microstructure.Acta Materialia,2011,59(10):3978-3989.
[16] Gao L,Yang H,Yuan R,et al.Sintering and microstructure of silicon nitride with magnesia and cerium additives.Journal of Materials Processing Technology,2001,115(3):298-301.
[17] Herrmann M,Schulz I,Bales A,et al."Snow flake" structures in silicon nitride ceramics-reasons for large scale optical inhomogeneities.Journal of the European Ceramic Society,2008,28(5):1049-1056.
[18] Belmonte M,de Pablos A,Osendi M I,et al.Effects of seeding and amounts of Y2O3:Al2O3 additives on grain growth in Si3N4 ceramics.Materials Science and Engineering:A,2008,475(1/2):185-189.
[19] Wang B,Yang J,Guo R,et al.Microstructure and boundary phases of Lu-Al-doped silicon nitride by pressureless sintering.Materials Science and Engineering:A,2009,500(1/2):79-83.
[20] Salto N,Kai K,Furusbo S,et al.Properties of nitrogen-containing yttia-alumina-silica melts and glasses.Journal of the American Ceramic Society,2003,86(4):711-716.
[21] Emoto H,Mitomo M.Control and characterization of abnormally grown grains in silicon nitride ceramics.Journal of the European Ceramic Society,1997,17(6):797-804.
[22] Dressler W,Kleebe H J,Hoffmann M J,et al.Model experiments concerning abnormal grain growth in silicon nitride.Journal of the European Ceramic Society,1996,16(1):3-14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%