欢迎登录材料期刊网

材料期刊网

高级检索

采用共沉淀法合成的复合添加剂粉体制备ZnO压敏陶瓷,用TG-DTA热分析沉淀物前驱体,通过XRD、SEM、EDS和DLS表征复合粉体的物相、形貌、组成元素、粒度及其分布,测试压敏陶瓷性能、并观察其结构.结果表明,550℃煅烧前驱体生成各添加剂氧化物的混合物;650℃煅烧1h形成组成为(Bi1.14Co0.26Mn0.29)(Sb1.14Cr0.57Ni0.29)O6.25焦绿石型复合添加剂粉体,复合粉体平均粒径为0.26 μm;复合粉体制备的ZnO压敏陶瓷的电位梯度为330 V/mm、非线性系数为47、漏电流为5 μA/cm2,电性能参数分别优于固相法混合添加剂粉体制备的压敏陶瓷,这归因于复合粉体制备的压敏陶瓷具有更均匀的显微结构.

参考文献

[1] Levison L M,Philipp H R.ZnO varistor-a review.American Ceramic Society Bulletin,1986,65(4):639-646.
[2] Gupta T K.Application of zinc oxide varistors.Journal of the American Ceramic Society,1990,73(7):1817-1840.
[3] Gupta T K,Miller A C.Improved stability of ZnO varistor via donor and acceptor doping at the grain boundary.Journal of Materials Research,1988,3(4):745-754.
[4] WANG Lan-Yi,XU Zheng-Kui,TANG Guo-Yi.The development trends of ZnO varistor ceramic powders.Journal of Functional Materials,2008,39(8):1237-1241.
[5] 王振林,李盛涛.氧化锌压敏陶瓷制造及应用.北京:科学出版社,2009:199-276.
[6] Milo(s)evi(c) O,Uskokovi(c) D,Karanovi(c),L J,et al.Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process.Journal of Materials Science,1993,28(19):5211-5217.
[7] LIU Su-Qin,HUANG Ke-Long,SONG Zhi-Fang,et al.Preparation of rare earth oxide doped ZnO varistor by Sol-Gel and its electrical properties.Journal of Inorganic Materials,2000,15(2):376-380.
[8] Zhang J C,Cao S X,Zhang R Y,et al.Effect of fabrication conditions on l-V properties for ZnO varistor with high concentration additives by Sol-Gel technique.Current Applied Physics,2005,5(4):381-386.
[9] PENG Zhong-Dong,YANG Jian-Hong,ZOU Zhong,et al.Thermodynamic analysis on preparing doped zinc oxide varistor ceramic powders by coprecipitation process.Journal of Inorganic Materials,1999,14(5):733-738.
[10] YUAN Fang-Li,LING Yuan-Bing,LI Jin-Lin,et al.ZnO varistors prepared by chemical coprecipitation powders.Journal of InorganicMaterials,1998,13(2):171-175.
[11] Banerjee A,Ramamohan T R,Patni M J.Smart technique for fabrication of zinc oxide varistor.Materials Research Bulletin,2001,36(7):1259-1267.
[12] Toplan H O,Karakas Y.Processing and phase evolution in low voltage varistor prepared by chemical processing.Ceramics International,2001,27(7):761-765.
[13] Wang M H,Yao C,Zhang N F,Degradation characteristics of low-voltage ZnO varistor manufactured by chemical coprecipitation processing.Journal of Materals Processing Technology,2008,202(1):406-411.
[14] Cheng L H,Li G R,Zheng L Y,et al.Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method.Journal of American Ceramic Society,2010,93(9):2522-2525.
[15] XIE Jian-Jun,SHI Ying,HU Yao-Ming,et al.Synthesis study of Lu3Al5O12(Ce) nanoscaled powder by coprecipitation.Journal of Inorganic Materials,2009,24(1):79-82.
[16] ZHANG Hong,ZHANG Zhe,MA Guo-Qiang,et al.Coprecipitation synthesis and oxide ionic conductivities of Ce0.8Sm0.2O1.9-based nanocomposite materials.Journal of Inorganic Materials,2009,24(3):353-356.
[17] YANG Yu-Ling,LI Xue-Ming,FENG Wen-Lin,et al.Synthesis and characteristic of CaMoO4:Eu3+ red phosphor for W-LED by coprecipitation.Journal of Inorganic Materials,2010,25(10):1015-1019.
[18] YANG Yan,LI Sheng-Tao.CaCu3Ti4O12ceramics prepared by coprecipitation method.Journal ofInorganic Materials,2010,25(8):835-839.
[19] SHI Ying,CHEN Qi-Wei,SHI Jian-Lin.Effect of precipitants on morphologies of Lu2O3 phospors by coprecipitation process.Journal of Inorganic Materials,2008,23(4):824-828.
[20] Subasri R,Asha M,Hembram K,et al.Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications.Materials Chemistry and Physics,2009,115(2):677-684.
[21] Anas S,Mangalaraja R V,Poothayal M,et al.Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique.Acta Materials,2007,55(17):5792-5801.
[22] WAN Shuai,L(U) Wen-Zhong.Electrical properties and kinetic of crystalline grain growth of low-voltage ZnO varistor doped with Zn-B glass.Journal of Inorganic Materials,2010,25(2):151-156.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%