以石墨为原料,采用Hummers法液相氧化合成了氧化石墨(GO),通过低温真空剥离预还原、磺化反应、葡萄糖二次还原,合成了高质量的磺化石墨烯(S-GNS),有效避免了在此过程中石墨烯大量团聚的现象.采用傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、热重分析仪(TG)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和原子力显微镜(AFM)等分析手段对磺化石墨烯样品进行了表征.实验结果表明:对氨基苯磺酸成功地接枝到了石墨烯上,磺化石墨烯还原彻底,热稳定性能高;石墨烯表面平整,缺陷少;单层磺化石墨烯厚度约为1.2 nm.水溶性、分散性实验结果表明:磺化石墨烯拥有高水溶性和高分散性.BET比表面积及电性能测试表明:磺化石墨烯的比表面积高达806.4 m2/g,薄膜材料的导电率为1150 S/m.
参考文献
[1] | Novoselov K S,Geim AK,Morozov S V,et al.Electric field effect in atomically thin carbon films.Science,2004,306(5696):666-669. |
[2] | Yang N L,Zhai J,Wang D,et al.Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells.Acs Nano,2010,4(2):887-894. |
[3] | Geim A K,Novosejov K S.The rise of graphene.Nat.Mater.,2007,6(3):183-191. |
[4] | Geim A K.Graphene:status and prospects.Science,2009,324(5934):1530-1534. |
[5] | 袁文辉,李保庆,李莉(YUAN Wen-Hui,et al).改进液相氧化还原法制备高性能氢气吸附用石墨烯.物理化学学报(Acta Phys-Chim Sinica),2011,27(9):2244-2250. |
[6] | Guo S J,Dong S J,Wang E K.Three-eimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet:facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation.Acs Nano,2010,4(1):547-555. |
[7] | CHEN Cao,ZHAI Wen-Tao,ZHENG Wen-Ge,et al.Preparation and characterization of water-soluble graphene and highly conducting films.Journal of Inorganic Materials,2011,26(7):707-710. |
[8] | Xu Y X,Bai H,Lu G W,et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets.J.Am.Chem.Soc.,2008,130(18):5856-5857. |
[9] | Liang F,Beach J M,Rai P K,et al.Highly exfoliated water-soluble single-walled carbon nanotubes.Chem.Mater.,2006,18(6):1520-1524. |
[10] | Mukherjee A,Kang J,Kuzenetsov O,et al.Water-soluble graphite nanoplatelets gormed by Oleum rxfoliation of graphite.Chem.Mater.,2011,23(1):9-13. |
[11] | Si Y,Samulski E T.Synthesis of water soluble graphene.Nano Letters,2008,8(6):1679-1682. |
[12] | 卢月美,巩前明,卢方平,等(LU Yue-Mei,et al).磺化碳纳米管/活性炭复合微球的制备及其对低密度脂蛋白的吸附性能.物理化学学报(Acta Phys-Chim Sinica),2011,27(3):683-688. |
[13] | Hummers W S,Offeman R E.Preparation of graphitic oxide.J.Am.Chem.Soc.,1958,80(6):1339. |
[14] | Yuan W H,Li B Q,Li L.A green synthetic approach to graphene nanosheets for hydrogen adsorption.Applied Surface Science,2011,257(23): 10183-10187. |
[15] | Lv W,Tang D M,He Y B,et al.Low-temperature exfoliated graphenes:vacuum-promoted exfoliation and electrochemical energy storage.ACS Nano,2009,3(11):3730-3736. |
[16] | Colthup N B,Daly L H,Wiberley S E.Introduction to Infrared and Raman Spectroscopy,3rd ed..London:Academic Press,1990. |
[17] | Li F,Cheng G X,Liang S P.Synthesis and characterization of heparin immobilized PAN-based resin.Polymer Bulletin,2006,57(3):261-267. |
[18] | Left A,He H Y,Forster M,et al.Structure of graphite oxide revisited.J.Phys.Chem.B,1998,102(23):4477-4482. |
[19] | 杨家义,史铁钧,金维亚,等(YANG Jia-Yi,et al).对氨基苯磺酸两步法修饰多壁碳纳米管.化学学报(Acta Chim Sinica),2008,66(5):552-556. |
[20] | Lee S,Lim S,Lim E,et al.Synthesis of aqueous dispersion of graphenes via reduction of graphite oxide in the solution of conductive polymer.J.Phy.Chem.Sol.,2010,71(4):483-486. |
[21] | Jung I,Pelton M,Piner R,et al.Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.Nano Letters,2007,7(12):3569-3575. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%