有机/无机材料的两相界面作用和均匀复合是影响复合支架材料性能的主要因素.本研究通过工艺改进,对聚氨酯软段成分进行改性得到醇化蓖麻油,经原位聚合发泡制备出多孔复合支架,较好地实现了纳米羟基磷灰石(n-HA)颗粒的均匀分散.结果表明,改性聚氨酯基体有效增加了羟基值,其与极性n-HA两相界面复合良好,无明显界面分相和颗粒团聚发生.支架孔径分布均匀,但支架材料的孔隙率、孔径大小和结晶度略有减小.红外光谱和X射线衍射分析表明,n-HA和醇化蓖麻油基聚氨酯基体的分子间存在丰富的氢键和化学键,促进了无机-有机相的相容性和稳定性.醇化改性和纳米无机粒子添加对材料性能的协同作用有效改善了支架的力学性能,复合支架的压缩强度和模量均大幅增长.该种n-HA/聚氨酯复合支架有望用于进一步的骨再生和骨组织工程研究.
参考文献
[1] | Tai K,Ulm F J,Ortiz C.Nanogranular origins of the strength of bone.Nano Letters,2006,6(11):2520-2525. |
[2] | DONG Zhi-Hong,LI Yu-Bao,ZHANG Li,et al.Preparation and characterization of porous HA/PU scaffold material for soft bone repair.Journal of Inorganic Materials,2007,22(6):1255-1258. |
[3] | Teixeira S,Rodriguez M A,Monteiro F J,et al.Physical characterization of hydroxyapatite porous scaffolds for tissue engineering.Materials Science and Engineering C,2009,29(5):1510-1514. |
[4] | CHENG Xin,LI Yan-Bao,LU Chun-Hua,et al.Effect of pretreatment on fabrication of natural fibroin/apatite composites using alternate soaking method.Journal of Inorganic Materials,2011,26(1):43-48. |
[5] | FENG Wen-Po,QI Yuan-Ming,TANG Ke-Yong.Effects of gum arabic on properties of collagen-hydroxyapatite composite.Journal of Inorganic Materials,2011,26(1):38-42. |
[6] | McBane J E,Shaifpoor S,Cai K,et al.Biodegradation and in vivo biocompatibility of a degradable,polar/hydrophobic/ionic polyurethane for tisse engineering applications.Biomaterials,2011,32(26):6034-6044. |
[7] | Hong Y,Guan J,Fujimoto K L,et al.Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds.Biomaterials,2010,31(15):4249-4258. |
[8] | Tare R S,Khan F,Tourniaire G,et al.A microarray approacth to the identification of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth.Biomaterials,2009,30(6):1045-1055. |
[9] | Boissard C I R,Bourban P E,Tami A E,et al.Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.Acta Biomaterialia,2009,5(9):3316-3327. |
[10] | Wang L,Li Y B,Zuo Y,et al.Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration.Biomedical materials,2009,4:1-7. |
[11] | Liu H,Zuo Y,Li Y B,et al.Preparation and characterization of aliphatic polyurethane and hydroxyapatite composites scaffold.Journal of Applied Polymer Science,2009,112(5):2968-2975. |
[12] | Exner W,Arlt C,Mahrholz T,et al.Nanoparticles with various surface modifications as functionalized cross-linking agents for composite resin materials.Composites Science and Technology,2012,72(10):1153-1159. |
[13] | Heo Su-Jin,Kim Seung-Eon,Wei Jie,et al.Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.Journal of Biomedical Materials Research Part A,2009,89A:108-116. |
[14] | 赵亮,秦岩.植物油醇解发制备单甘酯及不饱和聚酯合成研究.武汉:武汉理工大学硕士论文,2008. |
[15] | Wang H J,Rong M Z,Zhang M Q,et al.Biodegradable foam plastics based on castor oil.Biomacromolecules,2008,9(2):615-623. |
[16] | Hanemann T.Influence of particle properties on the viscosity of polymer-alumina composites.Ceramics International,2008,34(8):2099-2105. |
[17] | Gite V V,Kulkami R D,Hundiwale D G,et al.Synethesis and characterization of polyurethane coatings based on trimer of isophorone diisocyanate (IPDI) and monoglycerides of oils.Surface Coatings International Part B:Coatings Transactions,2006,89:99-192. |
[18] | Nejati E,Mirzadeh H,Zandi M.Syntheis and characterization of nano-hydroxyapatite rods/poly(L-lactide acid) composite scaffolds for bone tissue engineering.Composite Part A:Applied Science and Manufacturing,2008,39(10):1589-1596. |
[19] | Teramoto N,Saitoh Y,Takahashi A,et al.Biodegradable polyurethane elastomers prepared from isocyanate-terminated poly(ethylene adipate),castor oil,and glycerol.J.Appl.Polym.Sci,2010,115(6):3199-3204. |
[20] | Bertazzo S,Zambuzzi W F,Capos D DP,et al.Hydroxyapatite surface solubility and effect on cell adhesion.Colloids and Surfaces B:Biointerfaces,2010,78:177-184. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%