欢迎登录材料期刊网

材料期刊网

高级检索

首先在400℃的干燥空气(流量为500 sccm)及不同水汽流量(500、1500、3000、4000 sccm)等条件下分别热氧化铜片获得了系列垂直生长的氧化铜纳米线,随后,采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)研究了不同条件下所制备的氧化铜纳米线形貌、结构等性能,并进一步研究了其场发射性能.研究结果表明:水汽对氧化铜纳米线的密度及场发射性能影响较大,在500 sccm空气流量条件下,通入水汽(500 sccm)条.件与未通入水汽条件生长得到的氧化铜纳米线相比,其密度明显增大,场发射性能提升,其开启场强约为3.7 V/μm,明显低于干燥空气中生长氧化铜纳米线的开启场强(6.5 V/μm);此外,制备得到的氧化铜纳米线的场发射性能随着通入水汽量增大出现先升高后降低的趋势,并且,在通入水汽流量为3000 sccm时,获得最佳的氧化铜纳米线场发射性能,其开启场强低至1.4 V/μm.

参考文献

[1] IIJIMA S.Helical microtubules of graphitic carbon.Nature,1991,354(7):56-58.
[2] WANG Ma-Hua,ZHU Han-Qing,ZHU Guang-Ping.Field emission phenomena of hydro-thermally grown ZnO nanoinjectors.Acta Physica Sinica,2011,60(7):077305-1-6.
[3] LIN Zhi-Xian,GUO Tai-Liang,HU Li-Qin,et al.Tetrapod like ZnO nanostructures serving as cold cathodes for flat panel displays.Acta Physica Sinica,2006,55(10):5531-5534.
[4] HU Li-Qin,LIN Zhi-Xian,GUO Tai-Liang,et al.Field emission properties of aligned and unaligned In2O3 nanowires.Acta Physica Sinica,2006,55(11):6136-6140.
[5] LI Ben-Xia,WANG Yuan-Yuan,WANG Yan-Fen.Facile synthesis and photocatalytic property of CuO nanostructure arrays.Chinese Journal of Physical Chemistry,2009,25(11):2366-2372.
[6] Wang Sheng-Bo,HSIAO Chih-Hung,CHANG Shoou-Jinn,et al.CuO nanowire-based humidity sensor.IEEE Sensors Journal,2012,12(6):1884-1888.
[7] LUO Ming-Feng,LI Li-Xia,YANG Yi.Progress on the preparation and application of nano-CuO.Nanomaterial & Structure,2010,47(5):297-303.
[8] ZHAN R Z,CHEN Jun,DENG S Z,et al.Fabrication of gated CuO nanowire field emitter arrays for application field emission display.Microelectronics and Nanometer Structures,2010,28(3):558-561.
[9] YUAN Lu,WANG Yi-Qian,MEMA Rediola,et al.Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals.Acta Materialia,2011,59(6):2491-2500.
[10] JANA S,DAS S,DAS N S,et al.CuO nanostructures on copper foil by a simple wet chemical route at room temperature.Materials Research Bulletin,2010,45(6):693-698.
[11] WANG Wen-Zhong,ZHUANG Yan,LI Lin.Structure and size effect of CuO nanowires prepared by low temperature solid-phase process.Materials Letters,2008,62(10):1724-1726.
[12] FAN X Y,WU Z G,YAN P X,et al.Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film.Materials Letters,2008,62(12/13):1805-1808.
[13] CHEN J T,ZHANG F,WANG J,et al.CuO nanowires synthesized by thermal oxidation route.Journal of Alloys Compounds,2008,454(1/2):268-273.
[14] XU C H,WOO C H,SHI S Q.The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates.Superlattices and Microstructures,2004,36(1/2/3):31-38.
[15] ZHONG M L,ZENG D C,LIU Z W,et al.Synthesis,growth mechanism and gas-sensing properties of large-scale CuO nanowires.Acta Materialia,2010,58(18):5926-5932.
[16] Massalski TB.Binary Alloy Phase Diagrams,2nd ed.USA:ASM International,1990.
[17] XU C H,WOO C H,SHI S Q.Formation ofCuO nanowires on Cu foil.Chemical Physics Letters,2004,399(1/2/3):62-66.
[18] ZHU Y W,MOO A M,YU T,et al.Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires.Chemical Physics Letters,2006,419(4/5/6):458-463.
[19] NI Sai-Li,CHANG Yong-Qin,LONG Yi,et al.Field emission from ZnO nanorods.Acta Physica Sinica,2006,55(10):5409-5412.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%