钠离子电池具有资源与成本等方面明显的优势,正成为新一代储能技术的发展热点.对于大规模、固定式储能场合,水溶液钠离子电池更为安全可靠、价格低廉、环境友好,理论上具有广泛的应用前景.然而,水溶液钠离子电池在材料选择和应用方面所面临的问题也非常复杂.针对这些问题,本文简要分析了水系储钠材料与电极反应的特殊性,介绍了水系钠离子电池的研究进展,同时结合本课题组的研究工作讨论了相关的技术发展方向.
参考文献
[1] | Yang Z,Zhang J,Kintner-Meyer M C W,et al.Electrochemical energy storage for green grid.Chem.Rev.,2011,111(5):3577-3613. |
[2] | Armand M,Tarascon J M.Building better batteries.Nature,2008,451(7179):652-657. |
[3] | Dunn B,Kamath H,Tarascon J M.Electrical energy storage for the grid:a battery of choices.Science,2011,334(6058):928-935. |
[4] | Tarascon J M.Is lithium the new gold? Nature Chem.,2010,2(6):510. |
[5] | Slater M D,Kim D,Lee E,et al.Sodium-ion batteries.Adv.Funct.Mater.,2013,23(8):947-958. |
[6] | Qian J,Wu X,Cao Y,et al.High capacity and rate capability of amorphous phosphorus for sodium ion batteries.Angew.Chem.,Int.Ed.,2013,52(17):4633-4636. |
[7] | Qian J F,Zhou M,Cao Y L,et al.Nanosized Na4Fe(CN)6/Ccomposite as a low-cost and high-rate cathode material for sodium-ion batteries.Adv.Energy Mater,2012,2(4):410-414. |
[8] | Qian J F,Chen Y,Wu L,et al.High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.Chem.Commun.,2012,48(56):7070-7072. |
[9] | Palomares V,Serras P,Villaluenga I,et al.Na-ion batteries,recent advances and present challenges to become low cost energy storage systems.Energy Environ.Sci.,2012,5(3):5884-5901. |
[10] | Palomares V,Casas-Cabanas M,Castillo-Martinez E,et al.Update on Na-based battery materials.A growing research path.Energy Environ.Sci.,2013,6(8):2312-2337. |
[11] | Kim S W,Seo D H,Ma X,et al.Electrode materials for rechargeable sodium-Ion batteries:potential alternatives to current lithium-ion batteries.Adv.Energy Mater,2012,2(7):710-721. |
[12] | Pan H,Hu Y S,Chen L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage.Energy Environ.Sci.,2013,6(8):2338-2360. |
[13] | Chen Z,Augustyn V,Jia X,et al.High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites.ACSNano,2012,6(5):4319-4327. |
[14] | Cao Y,Xiao L,Wang W,et al.Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life.Adv.Mater.,2011,23(28):3155-3160. |
[15] | Komaba S,Murata W,Ishikawa T,et al.Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries.Adv.Funct.Mater,2011,21(20):3859-3867. |
[16] | Li W,Dahn J R,Wainwright D S.Rechargeable lithium batteries with aqueous electrolytes.Science,1994,264(5162):1115-1118. |
[17] | Toupin M,Brousse T,Bélanger D.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor.Chem.Mater.,2004,16(16):3184-3190. |
[18] | Xia H,Meng Y S,Yuan G,et al.A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte.Electrochem.Solid-State Lett.,2012,15(4):A60-A63. |
[19] | Dickens P G,Chippindale A M,Hibble S J.Ion insertion reactions at a vanadium pentoxide cathode.Solid State Ionics,1989,34(1/2):79-85. |
[20] | Ghodbane O,Pascal J-L,Favier F.Microstructural effects on charge-storage properties in MnO2-Based electrochemical supercapacitors.ACSAppl.Mater.Interfaces,2009,1(5):1130-1139. |
[21] | Komaba S,Ogata A,Tsuchikawa T.Enhanced supercapacitive behaviors of bimessite.Electrochem.Commun.,2008,10(10):1435-1437. |
[22] | Whitacre J,Tevar A,Sharma S.Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device.Electrochem.Commun.,2010,12(3):463-466. |
[23] | Whitacre J F,Wiley T,Shanbhag S,et al.An aqueous electrolyte,sodium ion functional,large format energy storage device for stationary applications.J.Power Sources 2012,213:255-264. |
[24] | Kim D J,Ponraj R,Kannan A G,et al.Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes.J.Power Sources,2013,244:758-763. |
[25] | Qu Q T,Liu L L,Wu Y P,et al.Electrochemical behavior of V2O5·0.6H2O nanoribbons in neutral aqueous electrolyte solution.Electrochim.Acta,2013,96:8-12. |
[26] | Jung Y H,Hong S T,Kim D K.Electrochemical sodium ion intercalation properties of Na2.7Ru4O9 in nonaqueous and aqueous electrolytes.J.Electrochem.Soc.,2013,160(6):A897-A900. |
[27] | Wessells C D,Peddada S V,Huggins R A,et al.Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries.Nano Lett.,2011,11(12):5421-5425. |
[28] | Wessells C D,McDowell M T,Peddada S V,et al.Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.ACS Nano,2012,6(2):1688-1694. |
[29] | Pasta M,Wessells C D,Huggins R A,et al.A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.Nature Commun.,2012,3:1149. |
[30] | Qian J,Zhou M,Cao Y,et al.NaxMyFe(CN)6(M=Fe,Co,Ni)∶ a new class of cathode materials for sodium ion batteries J.Electrochem.,2012,18(2):108-112. |
[31] | Wu X,Cao Y,Ai X,et al.A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry.Electrochem.Commun.,2013,31(0):145-148. |
[32] | Zhou M,Qian J F,Ai X P,et al.Redox-active Fe(CN)64-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries.Adv.Mater,2011,23(42):4913-4917. |
[33] | Zhou M,Xiong Y,Cao Y,et al.Electroactive organic anion doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries.J.Polym.Sci.,Part B:Polym.Phys.,2013,51(2):114-118. |
[34] | Koshika K,Sano N,Oyaizu K,et al.An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte.Chem.Commun.,2009(7):836-838. |
[35] | Park S I,Gocheva I,Okada S,et al.Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries.J.Electrochem.Soc.,2011,158(10):A1067-A1070. |
[36] | Li Z,Young D,Xiang K,et al.Towards high power high rnergy aqueous sodium-ion batteries:the NaTi2(PO4)3/Na0.44MnO2 system.Adv.Energy Mater,2013,3(3):290-294. |
[37] | Wu W,Mohamed A,Whitacre J F.Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode,J.Electrochem.Soc.,2013,160(3):A497-A504. |
[38] | Song Z P,Zhan H,Zhou Y H.Polyimides:promising energy-storage materials.Angew.Chem.,Int.Ed.,2010,49(45):8444-8448. |
[39] | Choi W,Harada D,Oyaizu K,et al.Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.J.Am.Chem.Soc.,2011,133(49):19839-19843. |
[40] | Qu Q T,Wang B,Yang L C,et al.Study on electrochemical performance of activated carbon in aqueous Li2SO4,Na2SO4 and K2SO4 electrolytes.Electrochem.Commun.,2008,10(10):1652-1655. |
[41] | Qu Q T,Shi Y,Tian S,et al.A new cheap asymmetric aqueous supercapacitor:AC//NaMnO2.J.Power Sources 2009,194(2):1222-1225. |
[42] | Luo J Y,Cui W J,He P,et al.Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.Nature Chemistry,2010,2(9):760-765. |
[43] | Wang Y G,Lou J Y,Wu W,et al.Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅲ.capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH eElectrolyte solutions.J.Electrochem.Soc.,2007,154(3):A228-A234. |
[44] | Wang Y G,Luo J Y,Wang C X,et al.Hybrid aqueous Energy storage cells using activated carbon and lithium-ion intercalated compounds Ⅱ.comparison of Li Mn2O4,LiCo1/3Ni1/3Mn1/3O2 and LiCoO2 positive electrodes.J.Electrochem.Soc.,2006,153(8):A1425-A1431. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%