欢迎登录材料期刊网

材料期刊网

高级检索

通过简单溶剂热法合成表面粗糙的立方体结构MnFe2O4颗粒,样品粒径约为150 nm,立方体表面球状突起的直径约为10 nm,该特征增加了样品的比表面积。反应过程中,通过改变表面活性剂CTAB的加入量,有效影响晶体各个晶面方向的生长速度,最终合成不同形貌的样品(立方体、多面体、正八面体结构)。合成样品在室温下都表现出典型的铁磁性质。通过对刚果红和重金属离子 CrVI和 PbII溶液的吸附实验证明,表面粗糙的立方体结构 MnFe2O4颗粒在污水处理过程中,可以更高效地去除水中的污染物,通过磁分离技术回收样品以便再利用,提高废水净化率。

Manganese ferrite (MnFe2O4) with rough surface was synthesized by a simple solvothermal method. The average diameter of particles was about 150 nm, and the tubes of rough surface about 10 nm. Here, magnetic MnFe2O4 particles with different morphologies (cube, polyhedron and octahedron) were successfully prepared by controlling CTAB concentration. Both of the samples with different morphologies exhibit ferromagnetic behavior at room temperature. The saturation magnetization (Ms) and coercivity (Hc) of MnFe2O4 with non-smooth surface are 58.7 Am2/kg and 6.23 kA/m, respectively. The particles with rough surface also show good performance in removal of pollutants like Congo red (92.4 mg/g), CrVI (54.4 mg/g), and PbII (84.4 mg/g) from waste water by adsorption experiments. Because the particles are recollected by magnetic separation, the waste water purifica-tion rate can be improved, which expands the applications of magnetic materials.

参考文献

[1] CUI Y, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291(851):851?853.
[2] WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437(121?124):121?124.
[3] DUAN L F, JIA S S, ZHAO L J. Study on morphologies of Co mi-crocrystals produced by solvothermal method with different sol-vents. Materials Research Bulletin, 2010, 45(4):373?376.
[4] LIU Q,LV L,WANG Y. Electric and magnetic properties of NiFe2O4-BaTiO3 composites synthesized by hydrothermalmethod. Bulletin of the Chinese Ceramic Society, 2012, 33(1):50?55.
[5] FU F L, WANG Q. Removal of heavy metal ions from wastewaters:a review. J. Environ. Manage., 2011, 92(3):407?418.
[6] WANG Y H, LIN S H, JUAN R S. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. J. Haz-ard. Mater., 2003, 102(2/3):291?302.
[7] KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J., 2006, 118(1/2):83?98.
[8] LI M, QIAN F Y, LI X Y. Characterization of organic pollutants in bio-treated effluents of dyeing and textile wastewater and removal behavior during magnesium sulfate coagulation process. Environ-mental Chemistry, 2012, 31(1):88?93.
[9] MERIC S, KAPTAN D, OLMEZ T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process. Chemosphere, 2004, 54(3):435?441.
[10] PAN B J, PAN B C, ZHANG W M, et al. Development of poly-meric and polymer-based hybrid adsorbents for pollutants removal from waters. Chem. Eng. J., 2009, 151(1/2/3):19?29.
[11] MISHRA S P, SINGH V K, TIWARI D. Radiotracer technique in adsorp-tion study. 14. Efficient removal of mercury from aqueous solutions by hydrous zirco-nium oxide. Appl. Radiat. Isot., 1996 47(1):15?21.
[12] VANBENSCHOTEN J E, REED B E, MATSUMOTO M R, et al. Metal removal by soil washing for an iron-oxide coated sandy soil. Water Environ. Res., 1994(66):168?174.
[13] DING Z H, FENG J M. Surface characters of iron-(hydro)oxides andtheir adsorption of heavy metal ions. Acta Mineralogica Sinica,2000(20):349?352.
[14] AGRAWAL A, SAHU K K. Kinetic and isotherm studies of cad-mium adsorption on manganese nodule residue. J. Hazard. Mater., 2006(137):915?924.
[15] MANDAVIAN A R, MIRRAHIMI M A S. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superpara-magnetic magnetite nanoparticles through surface modification. Chem. Eng. J., 2010, 159(1/2/3):264?271.
[16] ZHAO X, LV L, PAN B, et al. Polymer-supported nanocomposites for environmental application-a review. Chem. Eng. J., 2011, 170(2/3):381?394.
[17] ZHAO M Y, DUAN L F, WU H, et al. Synthesis of hollow Fe3O4 submicrospheres and their adsorption-desorption capability for Congo red. Chin. J. Inorg. Chem., 2012, 28(10):2186?2192.
[18] WANG Y Q, CHENG R M, WEN Z, et al. Synthesis and charac-terization of single-crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment. Eur. J.Inorg.Chem., 2011, 19(1):2942?2947.
[19] ZHUO NA, LI LI, GAO YU, et al. CTAB-assisted synthesis of nano-composite Ag/ZnO-TiO2 and its UV photocatalytic activity. Chin. J. Inorg. Chem., 2013, 29(5):991?998.
[20] ZHU Y F, ZHAO W R, CHEN H R, et al. A Simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 parti-cles with oriented attachment structure and magnetic property. Phys. J. Chem. C, 2007, 111(14):5281?5285.
[21] DIMITROV D A, WYSIN G M. Effects of surface anisotropy on hysteresis in fine magnetic particles. Phys. Rev. B, 1994, 50(5):3077?3084.
[22] KODOMA R H, BERKOWITZ A E. Atomic-scale magnetic model-ing of oxide nanoparticles. Phys. Rev. B, 1999, 59(9):6321?6336.
[23] WANG L X, LI J C, JIANG Q, et al. Water-soluble Fe3O4 nanopar-ticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans., 2012, 41(15):4544?4551.
[24] GUO MING, HUANG FENG-QIN, LIU MI-MI, et al. Performance of binding interaction between Cr(Ⅵ)and serum proteome. Chin. J. Inorg.Chem., 2013, 29(5):1037?1044.
[25] WANG X S, CHEN J P. Biosorption of congo red from aqueous solution using wheat bran and rice bran:batch studies. Sep.Sci. Technol., 2009, 44(6):1452?1466.
[26] PANDAG C, DAS S K, GUHA A K. Effect of method of crystalli-zation on the IV-III and IV-II polymorphic transitions of ammo-nium nitrate. J. Hazard. Mater., 2009, 161(1):373?379.
[27] JIANG M Q, WANG Q P, JIN X Y, et al. Removal of Pb(II)from aqueous solution using modified and unmodified kaolinite clay. J. Hazard. Mater., 2009, 170(1):332?339.
[28] HU J, LO I M C, CHEN G H. Fast removal and recovery of Cr(VI)using surface-modified jacobsite(MnFe2O4)nanoparticles. Lang-muir, 2005, 21(24):11173?11179.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%