采用共沉淀.水热法合成了一系列Ni/MgAl(O)催化剂.用甲苯和萘的混合物作为焦油模型化合物,在固定床反应器上研究了该催化剂直接催化转化具有较低水蒸气/碳摩尔比的高温焦炉煤气中焦油为小分子气体的反应.考察了催化剂组成、水蒸气/碳摩尔比和反应条件等对催化剂性能的影响.结果表明,Mg/Al摩尔比为3时Ni/MgAl(O)催化剂表现出最优的催化性能.在700~800℃和水蒸气/碳摩尔比为0.68的反应条件下,15%Ni/Mg_3Al(O)催化剂能将甲苯和萘完全转化为CO和CH_4等小分子气体.在反应气中引入0.05%H_2S(摩尔分数)气体的实验表明,该催化剂在焦油催化转化反应中具有较好的抗硫能力.另外,在催化剂中加入少量Pt助剂能显著提高催化剂活性.
A series of Ni/MgAl(O) catalyst samples were prepared by the co-precipitation-hydrothermal method and were used for the cata-lytic conversion of model tar compounds toluene and naphthalene from hot coke oven gas with lower steam/carbon molar ratios in a fixed-bed reactor at atmospheric pressure. The effects of Mg/Al molar ratio in the catalyst, steam/carbon ratio and other reaction conditions on the catalytic performance were examined. The results indicated that the Ni/MgAl(O) catalyst with Mg/Al molar ratio of 3 showed the optimal catalytic performance for the catalytic conversion of model tar compounds. Toluene and naphthalene were completely converted into light fuel gases CO and CH_4 over 15%Ni/Mg_3Al(O) at 700-800℃ and steam/carbon = 0.68. The experimental results of introducing 0.05% H_2S (molar fraction) in the feed gas showed that the Ni/MgAl(O) catalyst had good sulfur tolerance. The addition of a small amount of Pt in the catalyst could obviously improve the catalytic performance of the Ni/MgAl(O) catalyst.
参考文献
[1] | Liu G R;Zheng M H;Ba T;Liu W B Guo L .[J].Chemosphere,2009,75:692. |
[2] | Jin H G;Sun S;Hart W;Gao L .[J].Journal of Engineering for Gas Turbines and Power,Transactions of the ASME,2009,131:521. |
[3] | Shen J;Liu Z D;Wang Z Z;Yang H W Yao R S .[J].International JOURNAL OF GREEN ENERGY,2008,5:413. |
[4] | 李雪玲,岳宝华,汪学广,于飞,孔令华,鲁雄刚,丁伟中.NiO/MgxSi1-xOy催化剂的制备及其在高温焦炉煤气中焦油组分催化裂解中的应用[J].物理化学学报,2009(04):762-766. |
[5] | Li L Y;Morishita K;Takarada T .[J].Fuel,2007,86:1570. |
[6] | Shen J;Wang Z Z .[J].Energy and Fuels,2007,21:3588. |
[7] | Guo J Z;Hou Z Y;Gao J;Zheng X M .[J].Energy and Fuels,2008,22:1444. |
[8] | Joseck F;Wang M;Wu Y .[J].International Journal of Hydrogen Energy,2008,33:1445. |
[9] | Li L;Morishita K;Takarada T .[J].Journal of Chemical Engineering of Japan,2006,39:461. |
[10] | Onozaki M;Watanabe K;Hashimoto T;Saegusa H Katayama Y .[J].Fuel,2006,85:143. |
[11] | Mirua K;Kawase M;Nakagawa H;Ashida R Nakai T Ishikawa T .[J].Journal of Chemical Engineering of Japan,2003,36:735. |
[12] | JessA .[J].Chemical Engineering Progress,1996,35:487. |
[13] | 于飞,岳宝华,汪学广,耿淑华,鲁雄刚,丁伟中.Ni/Ce-ZrO2/γ-Al2O3催化剂上高温焦炉煤气中焦油组分的常压加氢裂解[J].催化学报,2009(07):690-696. |
[14] | Tomishige K;Chen Y G;Fujimoto K .[J].Journal of Catalysis,1999,181:91. |
[15] | Wei J M;Xu B Q;Li J L;Cheng Z X Zhu Q M .[J].Applied Catalysis A:General,2000,196:L167. |
[16] | Ruckenstein E;Hu Y H .[J].Applied Catalysis A:General,1999,183:85. |
[17] | 王玉和,刘红梅,徐柏庆.NiO-MgO固溶体的形成对Ni/MgO-AN催化CO2重整CH4反应活性和稳定性的影响[J].催化学报,2005(12):1117-1121. |
[18] | Basagiannis A C;Verykios X E .[J].Applied Catalysis B:Environmental,2008,82:77. |
[19] | 徐军科,李兆静,汪吉辉,周伟,马建新.甲烷干重整催化剂Ni/Al2O3表面积炭表征与分析[J].物理化学学报,2009(02):253-260. |
[20] | 张月萍;祝新利;潘云翔;刘昌俊 .[J].催化学报,2008,29:1508. |
[21] | Rieck J S;Bell A T .[J].Journal of Catalysis,1985,96:88. |
[22] | Driessen J M;Poels E K;Hindermann J P;Ponec V .[J].Journal of Catalysis,1983,82:26. |
[23] | Hou Z Y;Yashima T .[J].Applied Catalysis A:General,2004,261:205. |
[24] | Li D L;Atake I;Shishido T;Oumi Y Sano T Takehira K .[J].Journal of Catalysis,2007,250:299. |
[25] | Cruz I O;Ribeiro N F P;Aranda D A G;Souza M M V M .[J].Catalysis Communications,2008,9:2606. |
[26] | Olsbye U;Akporiaye D;Rytter E;Ronnekleiv M Tangstad E .[J].Applied Catalysis A:General,2002,224:39. |
[27] | Takehira K;Shishido T;Wang P;Kosaka T Takaki K .[J].Journal of Catalysis,2004,221:43. |
[28] | Roh H S;Jun K W;Park S E .[J].Applied Catalysis A:General,2003,251:275. |
[29] | Damyanova S;Pawelec B;Arishtirova K;Fierro J L G Sener C Dogu T .[J].Applied Catalysis B:Environmental,2009,92:250. |
[30] | Nurunnabi M;Fujimoto K;Suzuki K;Li B Kado S Kunimori K Tomishige K .[J].Catalysis Communications,2006,7:73. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%