以四氯金酸和L-半胱氨酸为原料,合成了L-半胱氨酸功能化纳米金粒子,将此纳米粒子修饰在金盘电极表面并共价偶联漆酶分子.以循环伏安法研究了此固定漆酶电极在无氧磷酸盐缓冲液中电化学行为和催化氧还原能力,并进一步评估了其作为氧传感器使用的性能:以计时电流法测定其对氧气的检测限,与氧气的亲和力(以米氏常数表征),研究了传感器的长期使用性、热稳定性和pH-催化电流关系.结果表明,此固定漆酶电极可以实现漆酶活性中心T2与导电纳米粒子间的直接电子迁移而无需任何外加电子中介体(氧化还原峰的式电位为192.5 mVvsAgCl/Ag),并在接近漆酶活性中心T3氧化还原式电位(780 mV vs NHE)附近发生氧还原;测得的固酶电极与氧气的亲和力较高(米氏常数为216.4 μmol/L)且检测限低达0.22 μmol/L,在4℃下保存60d后活力仍然保持初始活力的大约78%.但这种电极的热稳定性较差,受pH值影响较明显,在pH值近于生理条件时几乎完全丧失活力.
参考文献
[1] | Willner I,Yan Y M,Willner B,et al.Integrated Enzyme-based Biofuel Cells-A Review[J].Fuel Cells,2009,1:17-24. |
[2] | Ivannov I,Vidakovic-Koch T,Sundmacher K.Recent Advances in Enzymatic Fuel Cells:Experiments and Modelling[J].Energies,2010,3:803-846. |
[3] | Cracknell J A,Vincent K A,Armsrong F A.Enzymes as Working or Inspirational Electrocatalysts for Fuel Cells and Electrolysis[J].Chem Rev,2008,108:2439-2461. |
[4] | Tsujimura S,Kamitaka Y,Kano K.Diffusional-Controlled Oxygén Reduction on Multi-Copper Oxidase-Adsorbed Carbon Aerogel Electrodes without Mediator[J].Fuel Cells,2007,6:463-469. |
[5] | Karnicka K,Miecznikowski K,Kowalewska B,et al.ABTS-Modified Multiwalled Carbon Nanotubes as an Effective Mediating System for Bioelectro-catalytic Reduction of Oxygen[J].Anal Chem,2008,80(19):7643-7648. |
[6] | Willner I,Katz E,Chief-Edit.Bioelectronics[M].Chap 3.Strauss:Wiley-VCH,2005:35-93. |
[7] | Patolsky F,Weizmann Y,Willner I.Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors[J].Angew Chem Int Ed,2004,43:2113-2117. |
[8] | Rahman M A,Noh H B,Shim Y B.Direct Electrochemistry of Laccase Immobilized on Au Nanoparticles Encapsulated-Dencdrimer Bonded Conducting Polymer:Application for a Catechin Sensor[J].Anal Chem,2008,80(21):8020-8027. |
[9] | Xiao Y,Patolsky F,Katz E,et al."Plugging into Enzymes":Nanowiring of Redox Enzymes by a Gold Nanoparticle[J].Science,2003,299:1877-1881. |
[10] | Qiu H J,Xu C X,Huang X R,et al.Adsorption of Laccase on the Surface of Nanoporous Gold and the Direct Electron Transfer between Them[J].J Phys Chem C,2008,112:14781-14785. |
[11] | ZHENG Hua,HU Jinbo,LI Qilong.Preparation of Daunomycin Modified Nano Gold Electrode and Its Application to Detection of DNA[J].Acta Chim Sin,2006,64(8):806-810(in Chinese).郑华,胡劲波,李启隆.柔红霉素修饰的纳米金电极的制备及其对DNA检测[J].化学学报,2006,64(8):806-810. |
[12] | Hao E C,Lian T Q.Buildup of Polymer/Au Nanoparticle Multilayer Thin Films Based on Hydrogen Bonding[J].Chem Mater,2000,12:3392-3396. |
[13] | Liu Y,Qu X H,Guo H W,et al.Facile Preparation of Amperometric Laccase Biosensor with Multifunction Based on the Matrix of Carbon Nanotubes Chitosan Composite[J].Biosens Bioelectron,2006,21:2195-2201. |
[14] | Ackermann Y,Guschin D A,Eckhard K,et al.Design of a Bioelectrocatalytic Electrode Interface for Oxygen Reduction in Biofuel Cells Based on A Specifically Adapted Os-Complex Containing Redox Polymer with Entrapped Trametes Hirsuta Laccase[J].Electrochem Commun,2010,12:640-643. |
[15] | Shleev S,Kasmi A E,Ruzgas T,et al.Direct Heterogeneous Electron Transfer Reactions of Bilirubin Oxidase at A Spectrographic Graphite Electrode[J].Electrochem Commun,2004,6:934-939. |
[16] | ZENG Han,LIAO Lingwen,LI Mingfang,et al.Poly Aryl Amide and Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J].Acta Phys Chim Sin,2010,26(12):3217-3224(in Chinese).曾涵,廖铃文,李明芳,等.聚芳酰胺-多壁碳纳米管混合物固定漆酶电极的电化学行为[J].物理化学学报,2010,26(12):3217-3224. |
[17] | Qiu H J,Xu C X,Huang X R,et al.Immobilization of Laccase on Nanoporous Gold:Comparative Studies on the Immobilization Strategies and the Particle Size Effects[J].J Phys Chem C,2009,113(6):2521-2525. |
[18] | Mano N,Kim H H,Zhang Y C,et al.An Oxygen Cathode Operating in a Physiological Solution[J].JAm Chem Soc,2002,124:6480-6486. |
[19] | Klis M,Karbarz M,Stojek Z,et al.Thermoresponsive Poly(N-Isopropylacry-lamide) Gel for Immobilization of Laccase on Indium Tin Oxide Electrodes[J].J Phys Chem B,2009,113:6062-6068. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%