欢迎登录材料期刊网

材料期刊网

高级检索

选取结构相近的6种天然黄酮化合物:槲皮素( Quercetin)、山奈酚(Kaempferol)、木犀草素(Luteolin)、柚皮素(Naringenin)、黄芩素(Baicalein)和芹菜素(Apigenin),利用紫外可见分光光度法,结合微量滴定手段,追踪并记录了6种黄酮化合物与Ce(Ⅳ)形成的氧化还原体系的紫外吸收信号,根据化合物对Ce(Ⅳ)响应差异,探讨了不同位置酚羟基对化合物抗氧化活性的贡献及作用机制.结果表明,色原酮C环上3-OH首先与Ce(Ⅳ)作用,发生质子解离而氧化,其氧化产物在294 nm产生较强的吸收峰,3′,4′邻位—OH有利于在氧化剂Ce(Ⅳ)存在时4′羟基解离形成分子内氢键,紫外吸收光谱带Ⅱ的双峰会明显分离.其它位置的酚羟基也会对Ce(Ⅳ)产生响应,且C环上的羟基比A环上的更灵敏.同时,低浓度的黄酮会引起Ce(Ⅳ)的吸光度明显降低,由此得出6种化合物抗氧化能力顺序为Quercetin> Kaempferol> Luteolin> Apigenin>Baicalein> Naringenin,与化合物的紫外吸收光谱响应灵敏度一致.

参考文献

[1] Burda S,Oleszek W.Antioxident and Antiradical Activities of Flavonoids[J].J Agric Food Chem,2001,49(6):2774-2779.
[2] Wojdylo A,Oszmian'ski J,Czemerys R.Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs[J].Food Chem,2007,105:940-949.
[3] He Jianbo,Yuan Shengjie,Du Jiaqi,et al.Voltammetric and Spectral Characterization of Two Flavonols for Assay-dependent Antioxidant Capacity[J].Bioelectrochemistry,2009,75:110-116.
[4] Ozyurt D,Demirata B,Apak R.Determination of Total Antioxidant Capacity by A New Spectrophotometric Method Based on Ce(Ⅳ) Reducing Capacity Measurement[J].Talanta,2007,71 (3):1155-1165.
[5] Ozyurt D,Demirata B,Apak R.Modified Cerium (Ⅳ)-based Antioxidant Capacity (CERAC) Assay with Selectivity over Citric Acid and Simple Sugars[J].J Food Compos Anal,2010,23:282-288.
[6] Karim M M,Lee S H,Kim Y S.Fluorimetric Determination of Cerium(Ⅳ) with Ascorbic Acid[J].J Fluoresc,2006,16(1):17-22.
[7] ZHANG Hongyu.Theory Explanation to Structure-activeness Relations of Oxidation Inhibitor Flavonoids[J].Sci China (Series B),1999,29:91-96 (in Chinese).张红雨.黄酮类抗氧化剂结构-活性关系的理论解释[J].中国科学(B辑),1999,29:91-96.
[8] Vaya J,Mahmood S,Goldblum A,et al.Inhibition of LDL Oxidation by Flavonoids in Relation to Their Structure and Calculated Enthalpy[J].Phytochemistry,2003,62:89-99.
[9] Heckert E G,Karakoti A S,Seal S,et al.The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria[J].Biomaterials,2008,29:2705-2709.
[10] Mohamed F A,Mohamed H A,Hussein S A,et al.A Validated Spectrofluorimetric Method for Determination of Some Psychoactive Drugs[J].J Pharm Biomed Anal,2005,39:139-146.
[11] Mahgoub H.Spectrophotometric and Fluorimetric Determination of Aztreonam in Bulk and Dosage Forms[J].J Pharm Biomed Anal,2003,31:767-774.
[12] Darwish I A,Khedr A S,Askal H F,et al.Simple Fluorimetric Method for Determination of Certain Antiviral Drugs via Their Oxidation with Cerium (Ⅳ)[J].Il Farmaco,2005,60:555-562.
[13] Moridani M Y,Pourahmad J,Bui H,et al.Dietray Flavonoids Iron Complexes as Cytoprotecfive Superoxide Radical Scavengers[J].Free Radical Biol Med,2003,34(2):243-253.
[14] HE Jianbo,DU Jiaqi,YUAN Shengjie,et al.Differences of Antioxygenic Property Between Luteolin and Quercetin:Electrochemistry Analysis[J].Food Sci,2009,30:37-.40(in Chinese).何建波,独家启,袁圣杰,等.木犀草素与槲皮素抗氧化性能差异的电化学研究[J].食品科学,2009,30:37-40.
[15] Cao Guohna,Sofic E,L Prio R.Antioxidant and Prooxidant Behavior of Flavoniods:Structure-Activity Relationships[J].Free Radical Biol Med,1997,22(5):749-760.
[16] Heijnen C G M,Haenen G R M M,Van Acker F A A,et al.Flavonoids as Peroxynitrite Scavengers:the Role of the Hydroxyl Groups[J].Toxicol in Vitro,2001,15(1):3-6.
[17] Seyoum A,Asres K,E1-Fiky F K.Structure-radical Scavenging Activity Relationships of Flavonoids[J].Phytochemistry,2006,67:2058-2070.
[18] Yang B,Kotani A,Arai K,et al.Estimation of the Antioxidant Activities of Flavonoids from Their Oxidation Potentials[J].Anal Sci,2001,17(5):599-604.
[19] WU Hong,GAO Pingzhang.DFT Studies on the Relationship of Antioxidative Activities with Electonic Structures of Eleven Flavonoids[J].J Math Med,2009,22:434-437 (in Chinese).吴洪,高平章.11种黄酮类化合物抗氧化活性与结构关系的DFT研究[J].数理医药学杂志,2009,22:434-437.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%