分别通过浸渍法和共沉淀法制备了不同Ni负载量的Ni/Al2O3催化剂.考察了Ni负载量、制备方法以及反应温度对Ni/Al2O3催化甲烷裂解性能的影响.结果表明,在550℃,浸渍法制备的Ni/Al2O3催化剂,当Ni负载量为20%(质量分数)、Ni金属平均粒径为11.25 nm时,具有最佳的甲烷催化裂解效果,其每摩尔Ni 的氢气产量和每克Ni碳产量分别为164 mol和15.30 g.链化剂制备方法对Ni/Al2O3甲烷催化裂解反应有显著影响,相同Ni负载量共沉淀法制备的Ni/Al2O3甲烷催化裂解总体效果要好于浸渍法制备的Ni/Al2O3,而且反应过程中生成的碳纤维较长,管径也较均一.550℃时,共沉淀法制备的Ni负载量为41.2%(质量分数)的Ni/Al2O3催化剂在反应至350 min时,仍保持着30%以上的转化率.
参考文献
[1] | Takenaka S,Shigeta Y,Tanabe E,et al.Methane Decomposition into Hydrogen and Carbon Nanofibers over Supported Pd-Ni Catalysts[J].J Catal,2003,220 (2):468-477. |
[2] | ZHANG Zhi,LU Guangda,TANG Tao,et al.Catalytic Decomposition of Methane by Ni/0xidized Diamond[J].Mater Rev,2007,21(F05):270-273 (in Chinese).张志,陆光达,唐涛,等.Ni/氧化金刚石催化裂解甲烷制氢技术研究[J].材料导报,2007,21(F05):270-273. |
[3] | ZHANG Zhi,TANG Tao,LU Guangda,et al.Production of Hydrogen and Carbon Nanofiber via Methane Decomposition[J].Chinese J Appl Chem,2008,25(2):245-250(in Chinese).张志,唐涛,陆光达,等.催化裂解甲烷制备氢气和碳纳米纤维[J].应用化学,2008,25(2):245-250. |
[4] | Song H,Zhang L,O2kan U S.Effect of Synthesis Parameters on the Catalytic Activity of Co ZrO2 for Bioethanol Steam Reforming[J].Green Chem,2007,9(6):686-694. |
[5] | Guevara J C,Wang J A.Ni/Ce-MCM-41 Meso-structured Catalysts for Simultaneous Production of Hydrogen and Nanocarbon via Methane Decomposition[J].Int J Hydrogen Energy,2010,35(8):3509-3521. |
[6] | Glugla M,Murdoch D K,Geiβler H,et al.Design of a Catalytic Exhaust Clean-up Unit for ITER[J].Fusion Eng Des,1998,39/40(1):893-899. |
[7] | Bornschein B,Glugla M,Günther K,et al.Tritium Tests with a Technical PERMCAT for Fnal Clean-up of ITER Exhaust Gases[J].Fusion Eng Des,2003,69(1/4):51-56. |
[8] | Glugla M,Antipenkov A,Beloglazov S.The ITER Tritium Systems[J].Fusion Eng Des,2007,82(5/14):472-487. |
[9] | Ermakova M A,Ermakov D Y,Kuvshinov G G,et al.New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition[J].J Cutal,1999,187(1):77-84. |
[10] | Takenaka S,Kobayashi S J,Ogihara H,et al.Ni/SiO2 Catalyst Effective for Methane Decomposition into Hydrogen and Carbon Nanofiber[J].J Catal,2003,217(1):79-87. |
[11] | Otsuka K,Ogihara H,Takenaka S.Decomposition of Methane over Ni Catalysts Supported on Carbonfibers Formed from Different Hydrocarbons[J].Carbon,2003,41(2):223-233. |
[12] | Venugopal A,Naveen S,Ashok J,et al.Hydrogen Production by Catalytic Decomposition of Methane over Ni/SiO2[J].Int J Hydrogen Energy,2007,32(12):1782-1788. |
[13] | Li Y,Zhang B C,Xie X W,et al.Novel Ni Catalysts for Methane Decomposition to Hydrogen and Carbon Nanofibers[J].J Catal,2006,238 (2):412-424. |
[14] | Bai Z Q,Chen H K.Methanc Decomposition over Ni Loaded Activated Carbon for Hydrogen Production and the Formation of Flamentous Carbon[J].Hydrogen Energy,2007,32(1):32-37. |
[15] | Fenelonov V B,Derevyankin A Y,Okkel L G,et al.Structure and Texture of Filamentous Carbons Produced by Methane Decomposition on Ni and Ni-Cu Catalysts[J].Carbon,1997,35(8):1129-1140. |
[16] | Yang R T,Chen J P.Mechanism of Carbon Filament Growth on Metal Catalysts[J].J Catal,1989,115 (1):52-64. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%