以碳化钨(WC)和Vulcan XC-72炭黑(XC)为载体制备了XC载Ir(Ir/XC)和WC/XC载Ir(Ir-WC/XC)催化剂,在用X射线能量色散谱、X射线衍射谱对催化剂表征的基础上,用电化学方法研究了2种载体Ir催化剂对氨氧化的电催化性能,发现氨在Ir-WC/XC催化剂电极上的氧化峰峰电流密度比在Ir/XC催化剂电极上大31.26%,而且电催化稳定性明显好于Ir/XC催化剂.
参考文献
[1] | Timmer B,Olthuis W,Berg A.Ammonia Sensors and Their Applications-a Review[J].Sens Actuat B,2005,107 (2):666-677. |
[2] | Wallgren K,Sotiropoulos S.Oxygen Sensors Based on a New Design Concept for Amperometric Solid State Devices[J].Sens Actuat B,1999,60(2/3):174-183. |
[3] | De Vooys A,Koper M,Van Santen R,et al.The Role of Adsorbates in the Electrochemical Oxidation of Ammonia on Noble and Transition Metal Electrodes[J].J Electroanal Chem,2001,506(2):127-137. |
[4] | HAN Yiping,LUO Peng,CAI Chengxin,et al.Effects of Pt and Ir Catalysts on Electro Oxidation of NH3 in Neutral Electrolyte[J].Chinese J Appl Chem,2008,25(3):361-365(in Chinese).韩益苹,罗鹏,蔡称心,等.Pt和Ir催化剂在中性电解液中对NH3电氧化性能[J].应用化学,2008,25(3):361-365. |
[5] | Tang L,Wang Y,Li Y,et al.Preparation,Structure,and Electrochemical Properties of Reduced Graphene Sheet Films[J].Adv Funct Mater,2009,19(17):2782-2789. |
[6] | Yoo E J,Okata T,Akita T,et al.Enhanced Electrocatalytic Activity of Pt Subnanoclusters on Graphene Nanosheet Surface[J].Nano Lett,2009,9(6):2255-2259. |
[7] | Seger B,Kamat P V.Electrocatalytically Active Graphene-Platinum Nanocomposites.Role of 2-D Carbon Support in PEM Fuel Cells[J].J Phys Chem C,2009,113(19):7990-7995. |
[8] | Liu Z,Liu Q,Ma Y,et al.Organic Photovoltaic Devices Based on a Novel Acceptor Material:Graphene[J].Adv Mater,2008,20(20):3924-3930. |
[9] | Yoo E J,Kim J,Hosono E,et al.Large Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries[J].Nano Leyt,2008,8 (8):2277-2282. |
[10] | Lu J,Do I,Drzal L T,et al.Nanometal-decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response[J].ACS Nano,2008,2(9):1825-1832. |
[11] | TANG Yawen,BAO Jianchun,ZHOU Yiming,et al.Preparation of Pt/Carbon-nanotubes Catalysts and Their Electrocatalytic Activities for Oxidation Methanol[J].Chinese J Inorg Chem,2003,19 (8):905-908 (in Chinese).唐亚文,包建春,周益明,等.碳纳米管负载铂催化剂的制备及其对甲醇的电催化氧化研究[J].无机化学学报,2003,19(8):905-908. |
[12] | ZHANG Bao,LUO Wenbin,LI Xinhai,et al.Electrochemical Properties of LiFePO4/C for Cathodematerials of Lithium Ion Batteries[J].Chinese J Nonferrous Met,2005,15(2):300-304(in Chinese).张宝,罗文斌,李新海,等.LiFePO4/C锂离子电池正极材料的电化学性能[J].中国有色金属,2005,15(2):300-304. |
[13] | TANG Tiandi,CHEN Jiuling,LI Yongdan.Treatment of the Carbon NanoFiber Surfaces in Mixed Concentrated HNO3-H2 SO4 and Catalytic Activity of Supported Pd-Pt for Naphthalene Hydrogenation[J].Acta Phys Chim Sin,2005,21 (7):730-734(in Chinese).唐天地,陈久岭,李永丹.碳纳米纤维的酸处理及其负载Pd-Pt的催化萘加氢活性[J].物理化学学报,2005,21 (7):730-734. |
[14] | DANG Wangjuan,HE Jianping,ZHOU Jianhua,et al.Dispersion and Electrocatalytic Performance of Platinum Nanoparticles Supported on Ordered Mesoporous Carbon[J].Acta Phys Chim Sin,2007,23 (7):1085-1089 (in Chinese).党王娟,何建平,周建华,等.介孔碳负载铂催化剂的分散性和电催化活性[J].物理化学学报,2007,23(7):1085-1089. |
[15] | XU Hongfeng,LU Lu,ZHU Shaomin.Graphite Nanofibers as Catalyst Support for Proton Exchange Membrane Fuel Cells[J].Chinese J Catal,2008,29(6):542-546(in Chinese).徐洪峰,卢璐,朱少敏.石墨纳米纤维用作质子交换膜燃料电池催化剂载体[J].催化学报,2008,29(6):542-546. |
[16] | TANG Yawen,CAI Shuang,CHEN Yu,et al.Effect of Structure of Carbon Nanotubes on Electrocatalytic Performance of Carbon Nanotubes Supported Pt Catalysts[J].Chem J Chinese Univ,2007,28(5):936-939(in Chinese).唐亚文,曹爽,陈煜,等.碳纳米管结构对碳纳米管载Pt催化剂电催化性能的影响[J].高等学校化学学报,2007,28(5) 936-939. |
[17] | MA Chunan,TANG Junyan,LI Guohua,et al.Preparation and Electro-property of Tungsten Carbide/Carbon Nanotube Composite[J].Chinese J Chem,2006,64(20):2123-2126(in Chinese).马淳安,汤俊艳,李国华,等.WC/纳米碳管复合材料制备及其电化学性能[J].化学学报,2006,64(20):2123-2126. |
[18] | Tang Y,Zhang L,Wang Y,et al.Preparation of a Carbon Supported Pt Catalyst Using an Improved Organic Sol Method and Its Electrocatalytic Activity for Methanol Oxidation[J].J Power Sources,2006,162(1):124-131. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%