无机材料电子迁移率高、光谱响应范围与太阳光谱匹配,而有机材料价格低廉、合成方法简单、容易制作在基底上,因此在太阳能电池中具有更广阔的应用前景.目前,阻碍有机太阳能电池发展的主要原因是材料的载流子迁移率低、器件稳定性差、吸收光谱与太阳光谱不匹配,导致光电转换效率较低.若能将有机、无机材料二者的优点相结合,将可提高有机太阳能电池的能量转换效率.目前的研究已经取得了一定进展,无机材料在受体层、阴极缓冲层、阳极缓冲层中的应用均不同程度地提高了有机太阳能电池的能量转换效率.本文综述了目前该领域的研究现状,并对今后的研究提出了展望.
参考文献
[1] | ZHAO Zhengming,LIU Jianzheng,SUN Xiaoying,et al.Solar Photovoltaic Power Generation and Applications[M].Beijing:Science Press,2005:1-295 (in Chinese).赵争鸣,刘建政,孙晓瑛,等.太阳能光伏发电及其应用[M].北京:科学出版社,2005:1-295. |
[2] | Lodhi M A K.Photovoltaics and Hydrogen:Future Energy Options[J].Energy Convers Manage,1997,38 (18):1881-1893. |
[3] | Yu G,Gao J,Hummelen J C,et al.Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal DonorAcceptor Heterojunctions[J].Science,1995,270(5243):1789-1791. |
[4] | CHE Xiaoxuan.Solar Photovoltaic System Introduction[M].Wuhan:Wuhan University Press,2006:134-136 (in Chinese).车孝轩.太阳能光伏系统概论[M].武汉:武汉大学出版社,2006:134-136. |
[5] | Chapin D M,Fuller C S,Pearson G L.A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power[J].J Appl Phys,1954,25:676-677. |
[6] | Günes S,Neugebauer H,Sariciftci N S.Conjugated Polymer-Based Organic Solar Cells[J].Chem Rev,2007,107 (4):1324-1338. |
[7] | Tang C W.Two-Layer Organic Photovoltaic Cell[J].Appl Phys Lett,1986,48(2):183-185. |
[8] | He Z C,Zhong C M,Huang X,et al.Simultaneous Enhancement of Open-Circuit Voltage,Short-Circuit Current Density,and Fill Factor in Polymer Solar Cells[J].Adv Mater,2011,23 (40):4636-4643. |
[9] | Sun Y M,Welch G C,Leong W L,et al.Solution-Processed Small-Molecule Solar Cells with 6.7% Efficiency[J].Nat Mater,2012,11(1):44-48. |
[10] | Ebrahim S,Soliman M,Abdel-Fattah T M.Hybrid Inorganic-Organic Heterojunction Solar Cell[J].J Electron Mater,2011,40(9):2033-2041. |
[11] | MI Baoxiu,GAO Zhiqiang,DENG Xianyu,et al.Based on the Organic Thin Film Solar Cell Material and Device Research Progress[J].Sci China(Ser B),2008,38(11):957-975(in Chinese).密保秀,高志强,邓先宇,等.基于有机薄膜的太阳能电池材料与器件研究进展[J].中国科学(B辑),2008,38(11):957-975. |
[12] | Zhou Y F,Eck M,Krüger M.Bulk-Heterojunction Hybrid Solar Cells Based on Colloidal Nanocrystals and Conjugated Polymers[J].Energy Environ Sci,2010,3(12):1851-1864. |
[13] | ZHANG Tianhui,PIAO Lingyu,ZHAO Suling,et al.New Progress in Study of Organic Solar Cell Materials[J].Chinese J Org Chem,2011,31(2):260-272(in Chinese).张天慧,朴玲玉,赵谡玲,等.有机太阳能电池材料研究新进展[J].有机化学,2011,31(2):260-272. |
[14] | Nelson J.Organic Photovoltaci Films[J].Curr Opin Solid State Mater Sci,2002,6 (1):87-95. |
[15] | Greenham N C,Peng X G,Alivisatos A P.Charge Separation and Transport in Conjugated-Polymer/SemiconductorNanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity[J].Phys Rev B,1996,54 (24):17628-17637. |
[16] | Huynh W U,Dittmer J J,Alivisatos A P.Hybrid N anorod-Polymer Solar Cells[J].Science,2002,295 (29):2425-2427. |
[17] | Wu Y,Zhang G Q.Performance Enhancement of Hybrid Solar Cells Through Chemical Vapor Annealing[J].Nano Lett,2010,10(5):1628-1631. |
[18] | Dayal S,Kopidakis N,Olson D C,et al.Photovoltaic Devices with a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3% Efficiency[J].Nano Lett,2010,10(1):239-242. |
[19] | Celik D,Krueger M,Veit C,et al.Performance Enhancement of CdSe Nanorod-Polymer Based Hybrid Solar Cells Utilizing a Novel Combintaion of Post-Synthetic Nanoparticle Surface Treatments[J].Sol Energy Mater Sol Cells,2012,98:433-440. |
[20] | Jeltsch K F,Schǎdel M,Bonekamp J B,et al.Efficiency Enhanced Hybrid Solar Cells Using a Blend of Quantum Dots and Nanorods[J].Adv Funct Mater,2012,22(2):397-404. |
[21] | Wang L,Liu Y S,Jiang X,et al.Enhancement of Photovoltaic Characteristics Using a Suitable Solvent in Hybrid Polymer/Multiarmed CdS Nanorods Solar Cells[J].J Phys Chem C,2007,111 (26):9538-9542. |
[22] | Thanachayanont C,Inpor K,Sahasithiwat S,et al.MEH-PPV/CdS Nanorod Polymer Solar Cells[J].J Korean Phys Soc,2008,52(5):1540-1544. |
[23] | Jiang X X,Che F,Xu H,et al.Template-Free Synthesis of Vertically Aligned CdS Nanorods and Its Application in Hybrid Solar Cells[J].Sol Energy Mater Sol Cells,2010,94(2):338-344. |
[24] | Cui D H,Xu J,Zhu T,et al.Harvest of Near Infrared Light in PbSe Nanocrystal-Polymer Hybrid Photovoltaic Cells[J].Appl Phys Lett,2006,88(18):183111. |
[25] | Tan Z N,Zhu T,Thein M,et al.Integration of Planar and Bulk Heterojunctions in Polymer/Nanocrystal Hybrid Photovoltaic Cells[J].Appl Phys Lett,2009,95(6):063510. |
[26] | Kwong C Y,Choy W C H,Djuri(s)i(c) A B,et al.Poly(3-hexylthiophene)∶TiO2 Nanocomposites for Solar Cell Applications[J].Nanotechnology,2004,15(9):1156-1161. |
[27] | Wang H,Oey C C,Djuri(s)i(c) A B,et al.Titania Bicontinuous Network Structures for Solar Cell Applications[J].Appl Phys Lett,2005,87 (2):023507. |
[28] | Shan M N,Wang S S,Bian Z Q,et al.Hybrid Inverted Organic Photovoltaic Cells Based on Nanoporous TiO2 Films and Organic Small Molecules[J].Sol Energy Mater Sol Cells,2009,93(9):1613-1617. |
[29] | Beek W J E,Wienk M M,Janssen R A J.Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles a Conjugated Polymer[J].Adv Mater,2004,16(12):1009-1013. |
[30] | Beek W J E,Wienk M M,Janssen R A J.Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles[J].Adv Funct Mater,2006,16(8):1112-1116. |
[31] | Oosterhout S D,Wienk M M,Bavel S S,et al.The Effect of Three-Dimensional Morphology on the Efficiency of Hybrid Polymer Solar Cells[J].Nat Mater,2009,8(10):818-824. |
[32] | Liu C Y,Holman Z C,Kortshagen U R.Hybrid Solar Cells from P3HT and Silicon Nanocrystals[J].Nano Lett,2009,9(1):449-452. |
[33] | Liu C Y,Holman Z C,Kortshagen U R.Optimization of Si NC/P3HT Hybrid Solar Cells[J].Adv Funct Mater,2010,20(13):2157-2164. |
[34] | Huang J S,Hsiao C Y,Syu S J,et al.Well-Aligned Single-Crystalline Silicon Nanowire Hybrid Solar Cells on Glass[J].Sol Energy Mater Sol Cells,2009,93(5):621-624. |
[35] | Pei Z W,Thiyagu S,Jhong M S,et al.An Amorphous Silicon Random Nanocone/Polymer Hybrid Solar Cell[J].Sol Energy Mater Sol Cells,2011,95(8):2431-2436. |
[36] | Trai S H,Chang H C,Wang H H,et al.Significant Efficiency Enhancement of Hybrid Solar Cells Using Core-Shell Nanowire Geometry for Energy Harvesting[J].ACS Nano,2011,5(12):9501-9510. |
[37] | Syu H J,Shiu S C,Lin C F.Silicon Nanowire/Organic Hybrid Solar Cell with Efficiency of 8.40%[J].Sol Energy Mater Sol Cells,2012,98:267-272. |
[38] | He L N,Jiang C Y,Wang H,et al.Highly Efficient Si-Nanorods/Organic Hybrid Core-Sheath Heterojunction Solar Cells[J].Appl Phys Lett,2011,99(2):021104. |
[39] | Brabec C J,Shaheen S E,Winder C,et al.Effect of LiF/Metal Electrodes on the Performance of Plastic Solar Cells[J].Appl Phys Lett,2002,80 (7):1288-1290. |
[40] | Ahlswede E,Hanisch J,Powalla M.Comparative Study of the Influence of LiF,NaF,and KF on the Performance of Polymer Bulk Heterojunction Solar Cells[J].Appl Phys Lett,2007,90 (16):163504. |
[41] | Jiang X X,Xu H,Yang L G,et al.Effect of CsF Interlayer on the Performance of Polymer Bulk Heterojunction Solar Cells[J].Sol Energy Mater Sol Cells,2009,93(5):650-653. |
[42] | Hǎnsel H,Zettl H,Krausch G,et al.Optical and Electronic Contributions in Double-Heterojunction Organic Thin-Film Solar Cells[J].Adv Mater,2003,15(24):2056-2060. |
[43] | Kim J Y,Kim S H,Lee H H,et al.New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer[J].Adv Mater,2006,18 (5):572-576. |
[44] | Kim J Y,Lee K,Coates N E,et al.Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing[J].Science,2007,317 (5835):222-225. |
[45] | Luo J X,Xiao L X,Chen Z J,et al.Insulator MnO:Highly Efficient and Air-Stable n-Type Doping Layer for Organic Photovoltaic Cells[J].Org Electron,2010,11(4):664-669. |
[46] | Qian L,Yang J,Zhou R,et al.Hybrid Polymer-CdSe Solar Cells with a ZnO Nanoparticle Buffer Layer for Improved Efficiency and Lifetime[J].J Mater Chem,2011,21(11):3814-3817. |
[47] | Mbule P S,Kim T H,Kim B S,et al.Effects of Particle Morphology of ZnO Buffer Layer on the Performance of Organic Solar Cell Devices[J].Sol Energy Mater Sol Cells,2013,112:6-12. |
[48] | Yusoff A R M,Kim H P,Jang J.Organic Photovoltaics with V2O5 Anode and ZnO Nanoparticles Cathode Buffer Layers[J].Org Electron,2013,14:858-861. |
[49] | White M S,Olson D C,Shabeen S E,et al.Inverted Bulk-Heterojunction Organic Photovoltaic Device Using a SolutionDerived ZnO Underlayer[J].Appl Phys Lett,2006,89(14):143517. |
[50] | Takanezawa K,Tajima K,Hashimoto K.Efficiency Enhancement of Polymer Photovoltaic Devices Hybridized with ZnO Nanorod Arrays by the Introduction of a Vanadium Oxide Buffer Layer[J].Appl Phys Lett,2008,93(6):063308. |
[51] | Sekine N,Chou C H,Kwan W L,et al.ZnO Nano-Ridge Structure and Its Application in Inverted Polymer Solar Cell[J].Org Electron,2009,10 (8):1473-1477. |
[52] | Hu Z Y,Zhang J J,Liu Y,et al.Influence of ZnO Interlayer on the Performance of Inverted Organic Photovoltaic Device[J].Sol Energy Mater Sol Cells,2011,95(8):2126-2130. |
[53] | Chen F C,Wu J L,Hsieh K H,et al.Polymer Photovoltaic Devices with Highly Transparent Cathodes[J].Org Electron,2008,9(6):1132-1135. |
[54] | Chen F C,Wu J L,Yang S S,et al.Cesium Carbonate as a Functional Interlayer for Polymer Photovoltaic Devices[J].J Appl Phys,2008,103(10):103721. |
[55] | Wang M D,Tang Q,An J,et al.Performance and Stability Improvement of P3HT∶ PCBM-Based Solar Cells by Thermally Evaporated Chromium Oxide(CrOx) Interfacial Layer[J].Appl Mater Interfaces,2010,2(10):2699-2702. |
[56] | Wang M D,Xie F Y,Xie W G,et al.Device Lifetime Improvement of Polymer-Based Bulk Heterojunction Solar Cells by Incorporating Copper Oxide Layer at Al Cathode[J].Appl Phys Lett,2011,98(18):183304. |
[57] | Zhang F L,Gadisa A,Inganǎs O,et al.Influence of Buffer Layers on the Performance of Polymer Solar Cells[J].Appl Phys Lett,2004,84(19):3906-3908. |
[58] | J(o)rgensen M,Norrman K,Krebs F C.Stability/Degradation of Polymer Solar Cells[J].Sol Energy Mater Sol Cells,2008,92(7):686-714. |
[59] | Shrotriya V,Li G,Yao Y,et al.Transition Metal Oxides as the Buffer Layer for Polymer Photovoltaic Cells[J].Appl Phys Lett,2006,88(7):073508. |
[60] | Jung J,Kim D,Shin W S,et al.Highly Efficient Organic Photovoltaic Cells with Molybdenum Oxide Buffer Layer[J].Jpn J Appl Phys,2010,49 (5/2):05 EB05. |
[61] | Kim D Y,Sarasqueta G,So F.SnPc∶ C60 Bulk Heterojunction Organic Photovoltaic Cells with MoO3 Interlayer[J].Sol Energy Mater Sol Cells,2009,93(8):1452-1456. |
[62] | Zeng W J,Yong K S,Kam Z M,et al.Effect of MoO3 as an Interlayer on the Performance of Organic Solar Cells Based on ZnPc and C60[J].Synth Met,2012,161(23):2748-2752. |
[63] | Han S,Shin W S,Seo M,et al.Improving Performance of Organic Solar Cells Using Amorphous Tungsten Oxides as an Interfacial Buffer Layer on Transparent Anodes[J].Org Electron,2009,10(5):791-797. |
[64] | Steirer K X,Chesin J P,Widjonarko N E,et al.Solution Deposited NiO Thin-Films as Hole Transport Layers in Organic Photovoltaics[J].Org Electron,2010,11 (8):1414-1418. |
[65] | Ryu M S,Jang J.Effect of Solution Processed Graphene Oxide/Nickel Oxide Bi-layer on Cell Performance of BulkHeterojunction Organic Photovoltaic[J].Sol Energy Mater Sol Cells,2011,95(10):2893-2896. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%