欢迎登录材料期刊网

材料期刊网

高级检索

采用对氨基苯磺酸对氧化石墨烯(GO)进行表面功能化,进而负载贵金属Pd,解决了Pd团聚和不易在载体表面负载的问题,从而提高了Pd基催化剂对于甲酸的催化能力.实验研究了相同实验条件下,Pd在氧化石墨烯、还原石墨烯(RGO)和磺化处理的石墨烯(SGO)表面的分散和负载量以及得到的复合催化剂的催化性能.实验结果表明,SGO更容易负载贵金属,得到的催化剂对O2气的电催化还原能力优于Pd/GO和Pd/RGO,此外Pd/SGO催化剂对CO的耐受力也明显提升,这可能是苯环上的π-π键和—SO3H的范德华力协同作用更有利于Pd的固定与分散.对Pd/SGO催化氧还原的机理也进行了分析,该氧还原为2电子反应过程.

参考文献

[1] Grasemann M,Laurenczy G.Formic Acid as a Hydrogen Source-Recent Developments and Future Trends[J].Energy Environ Sci,2012,5 (8):8171.
[2] Lee Y W,Han S B,Ko A R,et al.Glycerol-mediated Synthesis of Pd Nanostructures with Dominant { 111 } Facets for Enhanced Electrocatalytic Activity[J].Catal Commun,2011,15(1):137-140.
[3] Zhu Y,Khan Z,Masel R I.The Behavior of Palladium Catalysts in Direct Formic Acid Fuel Cells[J].J Power Sources,2005,139(1/2):15-20.
[4] Waszczuk P,Barnard T M,Rice C,et al.A Nanoparticle Catalyst with Superior Activity for Electrooxidation of Formic Acid[J].Electrochem Commun,2002,4:599-603.
[5] Ricea C,Ha S,Masela R I,et al.Direct Formic Acid Fuel Cells[J].J Power Sources,2002,111:83-89.
[6] Tu D D,Wu B,Wang B,et al.A Highly Sctive Carbon-supported PdSn Catalyst for Formic Acid Electrooxidation[J].Appl Catal B,2011,103(1/2):163-168.
[7] Jung W S,Han J,Yoon S P,et al.Performance Degradation of Direct Formic Acid Fuel Cell Incorporating a Pd Anode Catalyst[J].J Power Sources,2011,196(10):4573-4578.
[8] Zhou Y,Liu J,Ye J L,et al.Poisoning and Regeneration of Pd Catalyst in Direct Formic Acid Fuel Cell[J].Electrochim Acta,2010,55 (17):5024-5027.
[9] Ma J,Ji Y G,Sun H J,et al.Synthesis of Carbon Supported Palladium Nanoparticles Catalyst Using a Facile Homogeneous Precipitation-reduction Reaction Method for Formic Acid Electrooxidation[J].Appl Surf Sci,2011,257 (24):10483-10488.
[10] Meng H,Xie F Y,Chen J,et al.Electrodeposited Palladium Nanostructure as Novel Anode for Direct Formic Acid Fuel Cell[J].J Mater Chem,2011,21(30):11352.
[11] Aravind S S J,Ramaprabhu S.Pt Nanoparticle-Dispersed Graphene-Wrapped MWNT Composites as Oxygen Reduction Reaction Electrocatalyst in Proton Exchange Membrane Fuel Cell[J].ACS Appl Mater Interfaces,2012,4(8):3805-3810.
[12] Nesselberger M,Ashton S,Meier J,et al.The Particle Size Effect on the Oxygen Reduction Reaction Activity of Pt Catalysts:Influence of Electrolyte and Relation to Single Crystal Models[J].J Am Chem Soc,2011,133 (43):17428-17433.
[13] Ogi T,Honda R,Tamaoki K,et al.Direct Room-temperature Synthesis of a Highly Dispersed Pd Nanoparticle Catalyst and Its Electrical Properties in a Fuel Cell[J].Powder Technol,2011,205(1/3):143-148.
[14] Antolini E.Graphene as a New Carbon Support for Low-temperature Fuel Cell Catalysts[J].Appl Catal B,2012,123/124:52-68.
[15] Huang C C,Li C,Shi G Q.Graphene Based Catalysts[J].Energy Environ Sci,2012,5(10):8848.
[16] Huang H J,Wang X.Pd Nanoparticles Supported on Low-defect Graphene Sheets:for Use as High-performance Electrocatalysts for Formic Acid and Methanol Oxidation[J].J Mater Chem,2012,22(42):22533.
[17] Huang X,Qi X Y,Boey F,et al.Graphene-based Composites[J].Chem Soc Rev,2012,41(2):666.
[18] Kuila T,Bose S,Mishra A K,et al.Chemical Functionalization of Graphene and Its Applications[J].Prog Mater Sci,2012,57(7):1061-1105.
[19] Kim J,Cote L J,Huang J X.Two Dimensional Soft Material:New Faces of Graphene Oxide[J].Acc Chem Res,2012,45:1356-1364.
[20] Cui X,Zhang C Z,Hao R,et al.Liquid-phase Exfoliation,Functionalization and Applications of Graphene[J].Nanoscale,2011,3(5):2118.
[21] Li H Y,Zhang X Y,Pang H L,et al.PMo12-Functionalized Graphene Nanosheet-supported PtRu Nanocatalysts for Methanol Electro-oxidation[J].J Solid State Electrochem,2010,14 (12):2267-2274.
[22] Hummers W S,Offeman R B.Preparation of Graphitic Oxide[J].J Am Chem Soc,1958,80:1339.
[23] Shin H J,Kim K K,Benayad A,et al.Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance[J].Adv Funct Mater,2009,19(12):1987-1992.
[24] Marcano D C,Kosynkin D V,Berlin J M,et al.Improved Synthesis of Graphene Oxide[J].ACS Nano,2010,4:4806-4814.
[25] Xu Y X,Bai H,Lu G W,et al.Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets[J].J Am Chem Soc,2008,130:5856-5857.
[26] Liu F J,Sun J,Zhu L F,et al.Sulfated Graphene as an Eefficient Solid Catalyst for Acid-catalyzed Liquid Reactions[J].J Mater Chem,2012,22(12):5495.
[27] Pascual J J S,Cigarroa S C,Feria O S.Kinetics of Oxygen Reduction Reaction on Nanosized Pd Electrocatalyst in Acid Media[J].J Power Sources,2007,172(1):229-234.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%