欢迎登录材料期刊网

材料期刊网

高级检索

采用球磨法将酸功能化碳纳米管(AMWCNTs)与环糊精均匀混合.酸功能化有利于增强碳管和环糊精间的相互作用,从而使二者形成均匀、有效的复合.在N2气保护下碳化并经后续的ZnCl2活化处理,最终获得酸功能化碳纳米管/多孔碳(PC)复合体材料.采用透射电子显微镜、X射线衍射和拉曼光谱等方法对材料结构进行了表征.结果表明,碳纳米管在多孔碳骨架内均匀分布,并且复合体同时具有较高的比表面积和良好的导电性.循环伏安及恒流充放电等电化学测试表明,由于二者的协同作用及碳纳米管在多孔碳骨架内均匀、有效的复合,材料具有较好的电化学储能性能和良好的电化学稳定性.电流密度为0.5 A/g时,AMWCNTs/PC-12-4(其中12代表β-环糊精和AMWCNTs的质量比,4代表酸化碳纳米管/β-环糊精碳与氯化锌的质量比)复合材料的质量比电容为156 F/g,远远高于AMWCNTs(43 F/g)和PC-4(87 F/g).经5000次循环后,电极比电容无明显衰减,而且每次恒流充放电的库仑效率均大于99.9%,说明复合材料具有良好的稳定性,是非常有前景的超级电容器电极材料.

参考文献

[1] Miller J R,Simon P.Materials Science:Electrochemical Capacitors for Energy Management[J].Science,2008,321:651-652.
[2] Zhai Y P,Dou Y Q,Zhao D Y,et al.Carbon Materials for Chemical Capacitive Energy Storage[J].Adv Mater,2011,23:4823-4850.
[3] Arico A S,Bruce P,Scrosati B,et al.Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J].Nat Mater,2005,4:366-377.
[4] Stoller M D,Park S,Zhu Y,et al.Graphene-Based Ultracapacitors[J].Nano Lett,2008,8:3498-3502.
[5] Simon P,Gogotsi Y.Materials for Electrochemical Capacitors[J].Nat Mater,2008,7:845-854.
[6] Zhu Y W,Murali S T,Stoller M D,et al.Carbon-Based Supercapacitors Produced by Activation of Graphene[J].Science,2011,332:1537-1541.
[7] Conway B E.Electrochemical Supercapacitors:Scientific,Fundamentals and Technological Applications[M].Plenum:New York,1999:19-20.
[8] Sun L,Wang L,Tian C G,et al.Nitrogen-doped Graphene with High Nitrogen Level via a One-step Hydrothermal Reaction of Graphene Oxide with Urea for Superior Capacitive Energy Storage[J].RSC Adv,2012,2:4498-4506.
[9] YANG Yujuan,SAN Lin,HUANG Chengde.Liquid Phase Synthesis and Capacitance Properties of Layered Nano MnO2[J].Chinese J Appl Chem,2008,25(4):473-476(in Chinese).杨玉娟,桑林,黄成德.层状纳米MnO2的液相合成及其电容性能[J].应用化学,2008,25(4):473-476.
[10] LI Na,XIAO Yinghong,LU Jia,et al.Supercapacity of Carboxyl Graphene-Based Electroconductive Polypyrrole Composite[J].Chinese J Appl Chem,2013,30 (3):354-359 (in Chinese).李娜,肖迎红,鲁嘉,等.羧基化石墨烯基导电聚吡咯复合材料的超电容性能[J].应用化学,2013,30(3):354-359.
[11] LI Xiaohui,LI Yunyu,GAN Weiping,et al.Recent Advances of Oxide Electrode Materials of Supercapacitor[J].J Guangdong Non-ferrous Met,2006,16 (1):62-66 (in Chinese).黎小辉,黎运宇,甘卫平,等.超级电容器氧化物电极材料的研究进展[J].广东有色金属学报,2006,16(1):62-66.
[12] Zhang L L,Zhao X S.Carbon-based Materials as Supercapacitor Electrodes[J].Chem Soc Rev,2009,38:2520-2531.
[13] Yuan D S,Chen J X,Tan S X,et al.Worm-like Mesoporous Carbon Synthesized from Metal-organic Coordination Polymers for Supercapacitors[J].Electrochem Commun,2009,11:1191-1194.
[14] Liu K S,Fu H G,Xie Y,et al.Assembly of β-Cyclodextrins Acting as Molecular Bricks onto Multiwall Carbon Nanotubes[J].J Phys Chem C,2008,112:951-957.
[15] ZHANG Renyi,ZHANG Xiaoyan,FAN Huajun,et al.Progress in Supercapacitors Based on Carbon Nanotubes[J].Chinese J Appl Chem,2011,28 (5):489-499 (in Chinese).章仁毅,张小燕,樊华军,等.基于碳纳米管的超级电容器研究进展[J].应用化学,2011,28(5):489-499.
[16] Zou W,Du Z J,Liu Y X,et al.Functionalization of MWCNTs Using Polyacryloyl Chloride and the Properties of CNT-epoxy Matrix Nanocomposites[J].J Polym Sci Part A:Polym Chem,2006,44:6880-6887.
[17] Hull R V,Li L,Xing Y C,et al.Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes[J].Chem Mater,2006,18:1780-1788.
[18] Li Y,Zhang X B,Luo J H,et al.Purification of CVD Synthesized Single Wall Carbon Nanotubes by Different Acid Oxidation Treatments[J].Nanotechnology,2004,15:1645-1649.
[19] Kruk M,Kohlhaas K M,Dufour B,et al.Partially Graphitic,High-surface-area Mesoporous Carbons from Polyacrylonitrile Templated by Ordered and Disordered Mesoporous Silicas[J].Micropor Mesopor Mater,2007,102:178-187.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%