以硝酸锌、硝酸锰和2-甲基咪唑为原料,采用多步计时电位法和静置法,制备了氧化锌-二氧化锰-金属框架有机化合物(ZnO-MnO2-MOF)复合材料阵列电极.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X光电子能谱(XPS)和X射线衍射(XRD)等技术手段对比分析了该复合材料的结构和形貌,并采用循环伏安法、恒电流充放电、电化学阻抗和循环充放电法研究了电极的电化学性能.结果表明,与氧化锌-二氧化锰(ZnO-MnO2)复合材料阵列电极(Csp=121 F/g,j=2.5 A/g)相比,由于二氧化锰和金属有机框架化合物(MOF)的协同作用,修饰MOF后的ZnO-MnO2-MOF复合材料阵列电极具有较小的内阻,电容器比电容(Csp=146 F/g,j=2.5 A/g)性能提升了20%,具有更好的可逆法拉第反应和稳定性.
参考文献
[1] | Miller J R,Simon P.Electrochemical Capacitors for Energy Management[J].Science,2008,321:651-652.,2008. |
[2] | Li J,Wang X Y,Huang Q H.Studies on Preparation and Performances of Carbon Aerogel Electrodes for the Application of Supercapacitor[J].J Power Sources,2006,158 (1):784-788.,2006. |
[3] | LI Siheng,LIU Qinghe,QI Li,et al.Progress in Resraech on Manganese Dioxide Electrode Materials for Electrochemical Capacitors[J].Chinese J Anal Chem,2012,40(3):339-346(in Chinese).李四横,刘庆鹤,齐力,等.电化学电容器中二氧化锰电极材料研究进展[J].分析化学,2012,40(3):339-346.,2012. |
[4] | Hou Y,Cheng Y W,Hobson T,et al.Design and Synthesis of Hierarchical MnO2 Nanespheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrode[J].Nano Lett,2010,10:2727-2733.,2010. |
[5] | Choi B G,Yang M H,Hong W H,et al.3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities[J].ACS Nano,2012,6(5):4020-4028.,2012. |
[6] | Cheng Y W,Lu S T,Zhang H B,et al.Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors[J].Nano Leu,2012,12:4206-4211.,2012. |
[7] | Wang G P,Zhang L,Zhang J J.A Review of Electrode Materials for Electrochemical Supercapacitors[J].Chem Soc Rev,2012,41:797-828.,2012. |
[8] | Zhan W W,Kuang Q,Zhou J Z,et al.Semiconductor@Metal-Organic Framework Core-Shell Heterostructures:A Case of ZnO@ZIF-8 Nanorods with Selective Photoelectrochemical Response[J].J Am Chem Soc,2013,135:1926-t933.,2013. |
[9] | Cui J B,Gibson U J.Enhanced Nucleation,Growth Rate,and Dopant Incorporation in ZnO Nanowires[J].J Phys Chem B,2005,109:22074-22077.,2005. |
[10] | Zhai Y L,Zhai S Y,Chen G F,et al.Effects of Morphology of Nanostructured ZnO on Direct Electrochemistry and Biosensing Properties of Glucose Oxidase[J].J Electroanal Chem,2011,656:198-205.,2011. |
[11] | Lei Z B,Shi F H,Lu L.Incorporation of MnO2-Coated Carbon Nanotubes Between Graphene Sheets as Supercapacitor Electrode[J].Appl Mater Interfaces,2012,4:1058-1064.,2012. |
[12] | Lu G,Li S Z,Guo Z,et al.Imparting Functionality to a Metal Organic Framework Material by Controlled Nanoparticle Encapsulation[J].Nat Chem,2012,4:310-316.,2012. |
[13] | He L,Liu Y,Liu J,et al.Core Shell Noble-Metal@Metal-Organic-Framework Nanoparticles with Highly Selective Sensing Property[J].Angew Chem Int Ed Engl,2013,52(13):3741-3745.,2013. |
[14] | Wang J,Zhong H X,Qin Y L,et al.An Efficient Three-Dimensional Oxygen Evolution Electrode[J].Angew Chem Int Ed Engl,2013,52(20):5248-5253.,2013. |
[15] | Toupin M,Brousse T,Belanger D.Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor[J].Chem Mater,2004,16(16):3184-3190.,2004. |
[16] | Qu Q,Zhang P,Wang B,et al.Electrochemical Performance of MnO2 Nanorods in Neutral Aqueous Electrolytes as a Cathode for Asymmetric Supercapacitors[J].J Phys Chem C,2009,113(31):14020-14027.,2009. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%