采用新型的介孔碳材料作为固载酪氨酸酶的检测平台构建生物传感器,应用于水体环境中苯酚污染物的检测,并通过高效液相色谱法对电化学酪氨酸酶生物传感器法的准确性进行了评价。研究表明,介孔碳的“空间限制效应”能够防止酪氨酸酶(三维尺寸为6.5 nm×9.8 nm×5.5 nm)体外去折叠失活。基于介孔碳材料构建的电化学酪氨酸酶生物传感器在苯酚污染物检测方面显示了优良的性能,其重现性、灵敏度、稳定性、选择性以及检出限均比较令人满意。基于介孔碳的电化学酪氨酸酶生物传感器对苯酚污染物的检出限达到20 nmol/L,线性范围为0.1~10μmol/L。采用基于介孔碳的电化学酪氨酸酶生物传感器和高效液相色谱法对实际水样品进行测定结果比对,结果表明该生物传感器方法检测结果准确、有效,适合于苯酚污染物突发污染事件的应急检测。
A novel electrochemical tyrosinase biosensor based on ordered graphitized meso-porous carbon( GMC)was obtained,which was used as a platform for phenol detection. The accuracy of tyrosinase biosensor method was comparatively evaluated by high performance liquid chromatography(HPLC). By entrapping tyrosinase molecules(6. 5 nm×9. 8 nm×5. 5 nm) into the mesopores of GMC( diameter 10 nm,GMC10),the“interspace confinement effect”of GMC10 may improve the stability of tyrosinase in vitro. After 21-day storage,the GMC10-based tyrosinase biosensor retained more than 85% of its initial response. It is indicated that GMC10 with“interspace confinement effect”can significantly prolong the life of tyrosinase molecules in vitro. Furthermore, the GMC-based tyrosinase biosensor displayed excellent analytical performances for phenol detection,such as stability,repeatability,selectivity,sensitivity and limit of detection. The GMC-based tyrosinase biosensor demonstrated a linear response for phenol from 0. 1 to 10 μmol/L with a low detection limit of 20 nmol/L. The comparative study between HPLC and GMC-based tyrosinase biosensor showed that the detection of phenol in water sample by the GMC-based tyrosinase biosensor method is reliable,accurate and effective. The proposed GMC-based tyrosinase biosensor proved to be a very promising“pre-alarm”tool for rapid detecting phenol pollution in emergency accidents.
参考文献
[1] | Nicholson R L;Hipskind J;Hanau R M.[J].Physiol Mol Plant P,198935(03):243. |
[2] | Saha N C;Bhunia F;Kaviraj A.[J].Bull Environ Contam Toxi-col,199963(02):195. |
[3] | Martirani L;Giardina P;Marzullo L.[J].Water Res,199630(08):1914. |
[4] | Giuffre A M.[J].Eur Food Res Technol,2013237(04):555. |
[5] | Vrsaljko D;Haramija V;Hadzi-Skerlev A.[J].Electr Pow Syst Res,201293:24. |
[6] | 王伟;黄显会;王辉.[J].色谱,201331(10):1028. |
[7] | 白玮玮;刘书慧;曹江平.[J].色谱,201331(03):254. |
[8] | Na W;Wei Q;Lan J N.[J].Micropor Mesopor Mater,2010134(1/2/3):72. |
[9] | Wang F;Guo C;Yang L R.[J].Biores Tech,2010101(23):8931. |
[10] | Wang Z L;Liu X J;Lv M F.[J].Carbon,201048(11):3182. |
[11] | Wang X;Lu X B;Wu L D.[J].ChemElectroChem,20141(04):808. |
[12] | Canbay E;Akyilmaz E.[J].Anal Biochem,2014444:8. |
[13] | Qu Y;Liao N N;Chen J P.[J].Nanosci Nanotech Let,20146(04):319. |
[14] | Yin H S;Zhou Y L;Xu J.[J].Anal Chim Acta,2010659(1/2):144. |
[15] | Zhang Y C;Ji C.[J].Anal Chem,201082(12):5275. |
[16] | Wu S O;Wang H N;Tao S Y.[J].Anal Chim Acta,2011686(1/2):81. |
[17] | Ibarra-Escutia P;Gomez J J;Calas-Blanchard C.[J].Talanta,201081(4/5):1636. |
[18] | Lee D;Lee J;Kim J.[J].Adv Mater,200517(23):2828. |
[19] | Wu L D;Lu X B;Zhang H J.[J].ChemSusChem,20125(10):1918. |
[20] | Lu X B;Xiao Y;Lei Z B.[J].Biosen Bioelectron,200925(01):244. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%