欢迎登录材料期刊网

材料期刊网

高级检索

针对待配准图在参考图上存在多个相似的区域,传统的SIFT算法导致匹配点数量较少,影响对模型变换参数估计的情况,提出了结合区域分割的SIFT方法.与原始算法相比,该算法可以得到更多正确的匹配点对,时效性上更优.实验结果表明,该算法比原算法的正确匹配点对提高了近30倍,结合区域分割的特征匹配,剔除了90%以上的误匹配点对,改进后的算法时间性能上也更优.

参考文献

[1] 王永明,王贵锦.图像局部不变性特征与描述[M].北京:国防工业出版社,2010:79-87,129-133,150-163.
[2] 倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(1):1-6.
[3] Tuyte T,Mikolajczyk K.Local Invariant Feature Detectors:A Survey.Foundations and Trends in Computer Graphics and Vision[M].Delft,Netherlands:Now Publishers Inc.,2008.
[4] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer vision,2004,60(2),91-110.
[5] Ke Y,Sukthankar R.PCA SIFT:a more distinctive representation for local image descriptors[C]//Proc.Conf.Computer Vision and Pattern Recognition,Waskington,USA:IEEE,2004:511-517.
[6] Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(27):1615-1630.
[7] Herbert B,Tinne T,Luc V G.SURF:speeded up robust features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
[8] 李英,李静宇,徐正平.结合SURF与聚类分析方法实现运动日标的快速跟踪[J].液晶与显示,2011,26(4):544-550.
[9] 孙辉,马天玮.基于相位相关的目标图像亚像元运动参数估计[J].液晶与显示,2011,26(6):858-862.
[10] Koenderink J.The structure of image[J].Biological Cybernetics,1984,50:363-396.
[11] Lindeberg T.Scale-space for discrete signals[J].IEEE Transaction PAMI,1980,207:187-207.
[12] Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
[13] 邸男,李桂菊,魏雅娟.采用SIFT 的末制导图像匹配技术[J].红外与激光工程,2011,40(8):1549-1593.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%