针对待配准图在参考图上存在多个相似的区域,传统的SIFT算法导致匹配点数量较少,影响对模型变换参数估计的情况,提出了结合区域分割的SIFT方法.与原始算法相比,该算法可以得到更多正确的匹配点对,时效性上更优.实验结果表明,该算法比原算法的正确匹配点对提高了近30倍,结合区域分割的特征匹配,剔除了90%以上的误匹配点对,改进后的算法时间性能上也更优.
参考文献
[1] | 王永明,王贵锦.图像局部不变性特征与描述[M].北京:国防工业出版社,2010:79-87,129-133,150-163. |
[2] | 倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,31(1):1-6. |
[3] | Tuyte T,Mikolajczyk K.Local Invariant Feature Detectors:A Survey.Foundations and Trends in Computer Graphics and Vision[M].Delft,Netherlands:Now Publishers Inc.,2008. |
[4] | Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer vision,2004,60(2),91-110. |
[5] | Ke Y,Sukthankar R.PCA SIFT:a more distinctive representation for local image descriptors[C]//Proc.Conf.Computer Vision and Pattern Recognition,Waskington,USA:IEEE,2004:511-517. |
[6] | Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(27):1615-1630. |
[7] | Herbert B,Tinne T,Luc V G.SURF:speeded up robust features[J].Computer Vision and Image Understanding,2008,110(3):346-359. |
[8] | 李英,李静宇,徐正平.结合SURF与聚类分析方法实现运动日标的快速跟踪[J].液晶与显示,2011,26(4):544-550. |
[9] | 孙辉,马天玮.基于相位相关的目标图像亚像元运动参数估计[J].液晶与显示,2011,26(6):858-862. |
[10] | Koenderink J.The structure of image[J].Biological Cybernetics,1984,50:363-396. |
[11] | Lindeberg T.Scale-space for discrete signals[J].IEEE Transaction PAMI,1980,207:187-207. |
[12] | Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395. |
[13] | 邸男,李桂菊,魏雅娟.采用SIFT 的末制导图像匹配技术[J].红外与激光工程,2011,40(8):1549-1593. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%