欢迎登录材料期刊网

材料期刊网

高级检索

为了解决传统Mean Shift跟踪方法中目标模板只能从单一图像建立,且很难更新问题,提出了一种新的MeanShift彩色图像跟踪方法.将RGB颜色空间投影到HSV颜色空间,建立了基于HSV颜色空间的统一直方图核函数模型.为了实现模板在线更新,引入在线支持向量机,推理了基于HSV空间的在线支持向量机的Mean Shift跟踪算法,从而适应目标因尺寸、姿态及光照造成的模型变化.为了验证算法的有效性,对两组国际通用的CAVIAR彩色图像序列进行了跟踪测试.实验结果表明,提出的改进算法在目标姿态、光照或背景发生较大变化时,能有效跟踪目标.当图像分辨率为384×288(目标尺寸约为20×80)时,最快处理速度达40 f/s,且跟踪精度比传统Mean Shift提高32.1%.

参考文献

[1] Comaniciu D,Ramesh V.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,24(5):564-577.
[2] ISARD M,BLAKE A.Condensation-conditional density propagation for visual tracking[J].International Journal of Computer Vision,1998,29(1):5-28.
[3] 杜超,刘伟宁,刘恋.一种基于卡尔曼滤波及粒子滤波的目标跟踪算法[J].液晶与显示,2011,26(3):384-389.Du C,Liu W N,Liu L.Target tracking algorithm based on Kalman filter and particle filter[J].Chinese Journal of Liquid Crystals and Displays,2011,26(3):384-389.(in Chinese)
[4] 王国良,刘金国.基于粒子滤波的多自由度运动目标跟踪[J].光学精密工程,2011,19(4):864-869.Wang G L,Liu J G.Moving object tracking with multi-degree-of-freedom based on particle filters[J].Optics and Precision Engineering,2011,19(4):864-869.(in Chinese)
[5] 陈爱华,孟勃,朱明,等.多模式融合的目标跟踪算法[J].光学精密工程,2009,17(1):185-190.Chen A H,Meng B,Zhu M,et al.Multi-pattern fusion algorithm for target tracking[J].Optics and Precision Engineering,2009,17(1):185-190.(in Chinese)
[6] Comaniciu D,Meer P.Mean shift:A Robust application toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
[7] 王田,刘伟宁,韩广良,等.基于改进Mean Shift的目标跟踪算法[J].液晶与显示,2012,27(3):396-400.Wang T,Liu W N,Han G L,et al.Target tracking algorithm based on improved Meanshift[J].Chinese Journal of Liquid Crystals and Displays,2012,27(3):396-400.(in Chinese)
[8] 刘扬,张云峰,董月芳.复杂背景下抗遮挡的运动目标跟踪算法[J].液晶与显示,2010,25(6):890-895.Liu Y,Zhang Y F,Dong Y F.Anti-occlusion algorithm of tracking moving object in clutter background[J].Chinese Journal of Liquid Crystals and Displays,2010,25(6):890-895.(in Chinese)
[9] Jung U C,SEUNG H J,XU.FPGA-based real-time visual tracking system using adaptive color histograms[C]//Proceedings of the 2007th International Conference on Robotics and Biomimetics,Sanya,P.R.China:ICRB,2007:172-177.
[10] Sheng S H,Kim J,Wang H Z.Generalized kernel-based visual tracking[J].IEEE Transactions on Circuits and Systems for Video Thechnology,2010,20(1):119-130.
[11] AVIDAN S.Ensemble tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (2):261-271.
[12] Collins R T,Liu Y X,Leordeanu M.Online selection of discriminative tracking features[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
[13] Syend N A,Liu H,Sung K.Incremental learning with support vector machines[C]// Proceedingsof the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence,Stockholm,Sweden; IJCAI,1999:2165-2176.
[14] 李国正,王猛,曾华军.支持向量机导论[M].北京:电子工业出版社,2004.Li G Z,Wang M,Zeng H J.An Introduction to Support Vector Machines and Other Kernel based Learning Methods[M].Beijing:Publishing House of Electronics Industry,2004.(in Chinese)
[15] Perez P,Hue C,Vermaak J,et al.Color-Based Probabilistic tracking.[C]// Lecture Notes in Computer Science,Co penhagan,Denmark:Eccv,2002:661-675.
[16] The school of Information,University of Edinburgh.CAVIAR Test case Scenarios[DB/OL].[2011-05-12]//http:groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%