欢迎登录材料期刊网

材料期刊网

高级检索

针对SIFT、SURF等局部不变特征在大尺寸图像上匹配时过于耗时的问题,将FREAK算子应用于图像匹配中,并提出一种多线程并行加速方法.首先介绍FREAK描述子的特征点的检测、特征描述向量的生成和特征向量的匹配的过程,并分析其优势.其次提出并行处理的2种思路:一是对待匹配图像进行有重叠的分块,对于每一块子图像,开辟新的线程分别进行处理;二是对匹配过程的3个步骤,采用流水线技术进行并行处理,每检测出一个特征点,随即提取出该点的特征向量,然后和模板图像的特征向量集进行匹配.改写SIFT、SURF和FREAK算法进行实验验证,结果证明FREAK计算过程比SIFT和SURF快得多,而并行方法可以在保证匹配精度的同时明显缩短匹配时间.

参考文献

[1] Mikolajczyk K,Schmid C.Indexing based on scale invariant interest points[C]//8th IEEE International Conference on Computer Vision,Montbonnot,France:ICCV,2001:525-531.
[2] Tuytelaars T,Gool L.Matching widely separated views based on affine invariant regions[J].International Journal of Computer Vision,2004,59(1):61-85.
[3] 刘向增,田铮,史振广,等.基于FKICA-SIFT特征的合成孔径图像多尺度配准[J].光学精密工程,2011,19(9):2186-2196.Liu X Z,Tian Z,Shi Z G,et al.SAR image multi-scale registration based on FKICA-SIFT features[J].Opt.Precision Eng.,2011,19(9):2186-2196.(in Chinese)
[4] 赵立荣,朱玮,曹永刚,等.改进的加速鲁棒特征算法在特征匹配中的应用[J].光学精密工程,2013,21(12):3263-3271.Zhao L R,Zhu W,Cao Y G,et al.Application of improved SURF algorithm to feature matching[J].Opt.Precision Eng.,2013,21(12):3263-3271.(in Chinese)
[5] 苏可心,韩广良,孙海江.基于SURF的抗视角变换图像匹配算法[J].液晶与显示,2013,28(4):626-632.Su K X,Han G L,Sun H J.Anti-Viepoint Changing image matching algorithm based on SURF[J].Chinese Journal of Liquid Crystals and Displays,2013,28(4):626-632.(in Chinese)
[6] 贾平,徐宁,张叶.基于局部特征提取的目标自动识别[J].光学精密工程,2013,21(7):1898-1905.Jia P,Xu N,Zhang Y.Automatic target recognition based on local feature extraction[J].Opt.Precision Eng.,2013,21(7):1898-1905.(in Chinese)
[7] 李英,李静宇,徐正平.结合SURF与聚类分析方法实现运动目标的快速跟踪[J].液晶与显示,2011,26(4):544-550.Li Y,Li J Y,Xu Z P.Moving target fast tracking using SURF and cluster analysis method[J].Chinese Journal of Liquid Crystals and Displays,2011,26(4):544-550.(in Chinese)
[8] Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[9] Brown M,Lowe D.Automatic panoramic image stitching using invariant features[J].International Journal of Computer Vision,2007,74(1):59-73.
[10] 翟优,曾峦,熊伟.基于不变特征描述符实现星点匹配[J].光学精密工程,2013,20(11):2531-2539.Zhai Y,Zeng L,Xiong W.Star matching based on invariant feature descriptor[J].Opt.Precision Eng.,2013,20 (11):2531-2539.(in Chinese)
[11] 吴威,许廷发,王亚伟,等.高精度全景补偿电子稳像[J].中国光学,2013,6(3):378-385.Wu W,X T F,Wang Y Wet al.High precision digital image stabilization with full frame compensation[J].Chinese Optics,2013,6(3):378-385.
[12] Noah S,Steven M,Richard S.Photo tourism:exploring photo collections in 3D[J].ACM Trans on Graphics,2006,25(3):835-846.
[13] Bay H,Tuvtellars T,Gool V.SURF:speeded up robust features[C]//Proceedings of the European Conference on Computer Vision,Graz,Austria:ECCV,2006:404-417.
[14] Calander M,Lepetit V,Strecha C et al.BRIEF:Binary robust Independent elementary features[C]//European Conference on Computer Vision,Crete,Greece:ECCV,2010:778-792.
[15] Stefan L,Margarita C,Roland S.BRISK:binary robust invariant scalable keypoints[C]//Proceedings of the IEEE International Conference on Computer Vision,Barcelona,Spain:ICCV,2011:2548-2555.
[16] Rublee E,Rabaud V,Konolige K,et al.Orb:an efficient alternative to sift or surf[C]// Proceedings of the IEEE International Conference on Computer Vision,Barcelona,Spain:ICCV,2011:2564-2571.
[17] Alahi A,Ortiz R,Vandergheynst P.FREAK:FAST Retina keypoint[C]//Computer Version and Pattern Recognition,Providence,RI,USA:CVPR,2011:510-517.
[18] Rosten E,Drummond T.Machine learning for highspeed corner detection[C]// 9th European Conference on Computer Vision,Graz,Austria:ECCV,2006:430-443.
[19] Field D,Gauthier J,Sher A,et al.Functional connectivity in the retina at the resolution of photoreceptors[J].Nature,2010,467(7316):673-677.
[20] 龚卫国,张璇,李正浩.基于改进局部敏感散列算法的图像匹配[J].光学精密工程,2011,19(16):1375-1383.Gong W G,Zhang X,Li Z H.Image registration based on extended LSH[J].Opt.Precision Eng.,2011,19(6):1375-1383.(in Chinese)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%