欢迎登录材料期刊网

材料期刊网

高级检索

针对显示器图像颜色复现问题,提出了一种基于图像质量评价和图像分割-融合策略的色域映射算法。详细分析了各类色域映射算法的特点并选取4种算法作为基本色域映射算法。提出了一种色域映射图像质量评价算法,并选用SLIC 超像素算法对源图像分割。使用基本色域映射算法对源图像进行映射处理,并计算每个分块内各映射图像与源图像的相似度。根据每个图像分块的相似度,对基本色域映射图像进行选择综合处理并融合成最终图像。最后以 LED 显示屏和 LCD 显示器为例,对本文提出的算法和其他基本色域映射算法进行主观评价对比实验。实验结果证明本文算法在图像颜色保真效果上要明显优于其他算法,但是在计算速度上仍有待优化。

To solve the image color reproduction problems for display devices,a gamut mapping algo-rithm based on image quality assessment and image segmentation-fusion strategy was proposed. Firstly,different sorts of gamut mapping algorithms were analyzed in detail and 4 algorithms were chosen as basic algorithms.And then,a gamut mapping image quality assessment method was pro-posed,and SLIC superpixel algorithm was used to carry out the source image segmentation.Gamut mapping was applied to the source image with the basic algorithms,and similarity was calculated within each image segment between mapped images and source image.According to the calculated similarities,each mapped image was chosen and comprehensively processed,and fused to the final image.Finally,with LED display panel and LCD display as an example,a subjective evaluation experiment was made to the proposed algorithm and other basic gamut mapping algorithms.Experi-ment result shows that the proposed algorithm is apparently better than other ones on keeping image color fidelity,and yet the calculation speed still needs to be improved.

参考文献

[1] 宋超;王瑞光;冯英翘.LED 大屏幕显示校正系数配置系统[J].液晶与显示,201328(03):392-397.
[2] 宋超;王瑞光;陈宇.LED 显示屏色域边界的快速计算[J].发光学报,201334(07):924-929.
[3] Morovic J;Luo M R.The fundamentals of gamut mapping:A survey[J].J ournal of Imaging Science and Tech-nology,200145(03):283-290.
[4] Bonnier N;Schmitt F;Brette H.Evaluation of spatial gamut mapping algorithms[A].,2006:56-61.
[5] Zoliker P;Simon K.Retaining local image information in gamut mapping algorithms[J].IEEE Transactions on Image Processing,20071 6(03):664-672.
[6] Bala R;de Queiroz R;Eschbach R.Gamut mapping to preserve spatial luminance variations[A].,2000:122-126.
[7] 王宇庆.局部方差在图像质量评价中的应用[J].中国光学,20114(05):531-536.
[8] Zhang L;Zhang L;Mou X.FSIM:A feature similarity index for image quality assessment[J].IEEE Trans-actions on Image Processing,201120(08):2378-2386.
[9] Lichtenauer M S;Zoliker P;Lissner I.Learning image similarity measures from choice data[A].,2012:24-30.
[10] Achanta R;Shaji A;Smith K.SLIC Superpixels compared to state-of-the-art superpixel methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,201234(1 1):2274-2282.
[11] He K;Sun J;Tang X.Guided image filtering[A].Greece,2010:1-14.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%