欢迎登录材料期刊网

材料期刊网

高级检索

针对现有传统亮度计采集背光源亮度的检测方法用时长,不适于生产线的问题,提出一种基于ε-支持向量回归机的背光源亮度均匀性评价方法。设计了背光源亮度均匀性检测平台,采用 CCD 图像传感器一次性同时获得几个背光源亮度图像,并进行校正。通过在非线性条件下的ε-支持向量回归机(ε-SVR)对校正后得到的背光源检测点亮度值构建关于背光源亮度值的预测模型,并对若干个背光源进行预测,与检测标准相比较判断其亮度是否合格。结果表明,在构建的支持向量回归模型中多种参数的融合检测,其精度是相似的。其中,最佳预测结果 RMSE 为43.28,BR 为1.21%。说明预测结果与传统亮度计的测量值之间误差较小,但操作方便、且所用时间更短,对于背光源亮度均匀性的客观评价与亮度计评价结果基本符合。

The traditional luminance meter takes too much time to detect the backlight luminance so that it is hard to take bulk-production in the engineering practice.To solve these problems,the paper puts forward an evaluation method of backlight luminance uniformity based onε-support vector re-gression.A backlight luminance uniformity testing platform is designed.First of all,a CCD image sensor is used in a single shot to get a digital image of several backlights,and the image is corrected. Secondly usesε-support vector regression (ε-SVR)in the condition of nonlinear to test the luminance values of check points in backlights,and forecast the real luminance values of backlights.At last,it is compared with the testing standard to judge whether the backlights are qualified.The results show that the fusion of parameters can be tested in the constructed support vector regression.And their ac-curacy shows good similarity.RMSE of the best prediction is 43.28,BR is 1.21%.The error be-tween the predicted results and these results of the measurements of the traditional luminance meter is much less,and it is easy to operate.The evaluation results of luminance meter are accorded with the method of the objective evaluation of the backlight luminance uniformity.

参考文献

[1] Lee J,Kim B C.The relationship between innovation and market share:Evidence from the global LCD industry [J].Ind.Innov,2013,20(1):1-21.,2013.
[2] Poor A.LCDs′bright future [J].Spectrum,2011,48(10):24-25.,2011.
[3] Li Y,Chu P,Liu J,et al.A novel partitioned light guide backlight LCD for mobile devices and local dimming method with non-uniform backlight compensation [J].Display Technology,J ournal of,2014,(10)4:321-328.,2014.
[4] 季旭东.LCD背光源产品的新发展[J].液晶与显示,2002(02):119-127.
[5] 宋新丽,郑喜凤,凌丽清,郝亚茹.基于灰度直方图的LED显示屏亮度均匀性评估方法[J].液晶与显示,2009(01):140-144.
[6] Topcon Cooperation.BM-7A Specification [OL].Available:http://www.totalsmart.com.tw/Download/BM-7A.pdf
[7] 徐秀知,冯永茂,邓春健,陈宇,丁铁夫.一种新的OLED亮度均匀度测试方法[J].光学技术,2007(01):41-43,47.
[8] Özcan B,FılalıA.Artificial neural networks for the cost estimation of stamping dies [J].Neural Computing and Applications,2014,25:717-726.,2014.
[9] Halfawy M R,Hengmeechai J.Automated defect detection in sewer closed circuit television images using histo-grams of oriented gradients and support vector machine [J].Autom.Construction,2014,38:1-13.,2014.
[10] WuH W,Yu H Y,Zhang L.The net photosynthetic rate prediction model based on the optimized support vector machine[J].Spectroscopy and Spectrum Analysis,2011,31(5):1414-1418.,2011.
[11] Tohsing K,Schrempf M,Riechelmann S,et al.Measuring high-resolution sky luminance distributions with a CCD camera[J].Applied Optics,2013,52(8):1564-157.,2013.
[12] 林升梁,刘志.基于RBF核函数的支持向量机参数选择[J].浙江工业大学学报,2007(02):163-167.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%