欢迎登录材料期刊网

材料期刊网

高级检索

为减少肺组织分割算法的运算时间,提出了一种基于粒子群优化的 Otsu 肺组织改进自动分割算法。针对传统粒子群优化的二维 Otsu 算法中二维直方图计算量大、粒子搜索容易陷入局部最优解的缺陷,使用灰度级-梯度二维直方图减少二维直方图的计算量,并减小粒子搜索范围,采用基于粒子空间对称分布的改进粒子群获取最佳阈值。算法实现过程中利用孔洞填充算法去除背景,基于形态学操作去除噪声、修补病变区域产生的孔洞。仿真实验结果显示,本文算法对图像尺寸为512像素×512像素 CT 图像的阈值分割时间约为0.2 s,比基于灰度级-邻域均值二维直方图的粒子群优化的 Otsu 算法的阈值分割速度提高了约16%。较好地实现了胸腔 CT 图像的肺组织自动分割,与传统算法相比较,本算法在保证分割精度的基础上分割速度明显提升。

This paper develops an automatic segmentation method of lung image using two dimensional Otsu method based on particle swarm optimization in order to reduce operation time.Aiming at the shortage of the traditional two dimensional Otsu based on particle swarm optimization,which the cal-culating quantity is large and standard particle swarm algorithm is easy to fall into local optimum,an improved lung segmentation based on 2D Otsu optimized by PSO is proposed in this paper.Using the grayscale-gradient two-dimensional histogram,not only reduces the amount of histogram’s calcula-tion,but also narrows the searching area of particles.The algorithm uses the improved PSO which based on diversity of particle symmetrical distribution to search optimal threshold.In the process of algorithm,the region filling algorithm is used to remove background in order to make the threshold segmentation of lung better,and the morphology operations to remove noise and repair holes which in the target image.The threshold segmenting time in this algorithm is about 0.2 s,increased about 1 6% than the speed of the traditional Otsu threshold segmentation optimized by PSO,the size of the CT images is 5 12 × 5 12 pixels in this experiment.The segmentation algorithm in this paper can seg-ment the lung in CT image automatically,not only ensures the accuracy of the segmentation,but also improves the speed of the segmentation in comparison with conventional algorithms.

参考文献

[1] 孟琭;贾同;赵大哲;赵宏.基于Snake模型的病变CT肺部图像分割[J].系统仿真学报,2009(15):4603-4606,4612.
[2] Ivanovska,T.;Hegenscheid,K.;Laqua,R.;Kühn,J.-P.;Gl?ser,S.;Ewert,R.;Hosten,N.;Puls,R.;V?lzke,H..A fast and accurate automatic lung segmentation and volumetry method for MR data used in epidemiological studies[J].Computerized Medical Imaging and Graphics: The Official Jounal of the Computerized Medical Imaging Society,20124(4):281-293.
[3] Wei,Y.;Shen,G.;Li,J.-J..A fully automatic method for lung parenchyma segmentation and repairing[J].Journal of digital imaging: the official journal of the Society for Computer Applications in Radiology,20133(3):483-495.
[4] Darmanayagam,S.E.;Harichandran,K.N.;Cyril,S.R.R.;Arputharaj,K..A novel supervised approach for segmentation of lung parenchyma from chest CT for computer-aided diagnosis[J].Journal of digital imaging: the official journal of the Society for Computer Applications in Radiology,20133(3):496-509.
[5] 吴成茂;田小平;谭铁牛.二维Otsu阈值法的快速迭代算法[J].模式识别与人工智能,2008(6):746-757.
[6] 王洪涛;李丹.基于改进粒子群算法的图像边缘检测研究[J].液晶与显示,2014(5):800-804.
[7] 孙越泓 .基于粒子群优化算法的图像分割研究[D].南京理工大学,2010.
[8] 孙越泓;魏建香;夏德深.一种基于粒子对称分布多样性的PSO算法[J].模式识别与人工智能,2010(2):137-143.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%