欢迎登录材料期刊网

材料期刊网

高级检索

提出了一种基于结构标签学习的显著性目标检测算法,将结构化学习方法应用到显著性目标检测中.首先从含有标记的图像中随机采集固定大小的矩形区域,并记录其结构标签;然后使用含结构标签的区域特征构建决策树集合;最后采用监督学习的方法对图像进行优化预测,得到最终的显著图.实验结果表明,本文方法能较准确地检测出图像库中图像的显著性区域,在数据库 MSRA5000和 BSD300的 AUC 值分别为0.8918、0.7052,说明本文方法具有较好的显著性检测效果.

This paper proposes a salient object detection method based on structured labels learning, applying a structured learning method to salient object detection.Firstly,we get a fixed rectangular region randomly from the local image which includes the labeling,and record the corresponding struc-tured labels.Then,a collection of decision trees is built by using the regional features which includes the structured labels.Finally,the final saliency map is captured by using the supervised learning ap-proach.Experiments show that our method can detect the salient objects accurately,and the AUC scores are 0.891 8 and 0.705 2 on the MSRA5000 and BSD300 datasets,the result shows that our method can achieve good effect in salient object detection.

参考文献

[1] 魏昱 .图像显著性区域检测方法及应用研究[D].山东大学,2012.
[2] 柯洪昌;孙宏彬.图像序列的显著性目标区域检测方法[J].中国光学,2015(5):768-774.
[3] Itti L.;Koch C..A model of saliency-based visual attention for rapid scene analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,199811(11):1254-1259.
[4] 杜杰;吴谨;朱磊.基于区域特征融合的RGBD显著目标检测[J].液晶与显示,2016(1):117-123.
[5] Liu, Tie,Yuan, Zejian,Sun, Jian,Wang, Jingdong,Zheng, Nanning,Tang, Xiaoou,Shum, Heung-Yeung.Learning to Detect a Salient Object[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,20112(2):353-367.
[6] Cheng, Ming-Ming;Mitra, Niloy J.;Huang, Xiaolei;Torr, Philip H. S.;Hu, Shi-Min.Global Contrast Based Salient Region Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,20153(3):569-582.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%