欢迎登录材料期刊网

材料期刊网

高级检索

提出了一种非抽样双树复小波变换(UDT-CWT)与基于块主元旋转的非负矩阵分解(BPP-NMF)相结合的多聚焦图像融合算法。利用 UDT-CWT 具有完美的平移不变性及良好的方向选择性,首先对图像进行多尺度、多方向分解并得到低频子带和高频子带系数;然后对低频子带系数采用块主元旋转的非负矩阵分解的融合策略,高频系数则选用高斯加权区域能量与区域标准差一致性选择的融合准则。最后对融合后的系数进行 UDT-CWT 逆变换得到重构图像。选用多组多聚焦图像进行融合并对融合结果进行主观视觉、客观方面的评价。试验结果表明,该融合算法不仅具有良好的视觉效果,同时在客观评价指标也优于一般的融合策略,验证了该算法的有效性。

A multi-focus image fusion algorithm based on undecimated dual-tree complex wavelet transform(UDT-CWT)domain and block principal pivoting method for nonnegative matrix factoriza-tion(BPP-NMF)is proposed.Firstly,combined with its shift invariance and good directional selectivi-ty,the source images are decomposed to sub-band images with multi-scales and multi-directions by UDT-CWT,thus the low frequency sub-band coefficients and high frequency sub-band coefficients are obtained.The fusion strategy of low frequency sub-band coefficients was based on the method of non-negative matrix factorization which adopted the block principal pivoting method;while for high fre-quency sub-band,a fusion rule adopting the consistency selection of Gaussian-weighted regional energy and area standard deviation is presented.Finally,the fused low and high frequency coefficients are reconstructed to image by undecimated dual-tree complex wavelet inverse transform.Fusion result is done with several sets of different multi-focus images, both subjective visual evaluation and objective performance assessments of these results are implemented.Results indicate that the fusion algorithm not only has good subjective visual effects,but also better than other general fusion strate-gies in the objective evaluation;hence the algorithm is effective.

参考文献

[1] 许廷发;李俊涛;张一舟;申子宜;郭巳秋.真彩色传递双波段图像融合[J].中国光学,2014(3):402-410.
[2] Starck J.-L.;Fadili J.;Murtagh F..The Undecimated Wavelet Decomposition and its Reconstruction[J].IEEE Transactions on Image Processing,20072(2):297-309.
[3] Unser M..Texture classification and segmentation using wavelet frames[J].IEEE Transactions on Image Processing,199511(11):1549-1560.
[4] Selesnick I.W.;Baraniuk R.G.;Kingsbury N.C..The dual-tree complex wavelet transform[J].IEEE Signal Processing Magazine,20056(6):123-151.
[5] Da Cunha A.L.;Zhou J.;Do M.N..The Nonsubsampled Contourlet Transform: Theory, Design, and Applications[J].IEEE Transactions on Image Processing,200610(10):3089-3101.
[6] 严洁;阮友田;薛珮瑶.主被动光学图像融合技术研究[J].中国光学,2015(3):378-385.
[7] 陈广秋;高印寒;刘广文;孙俊喜.有限离散剪切波域结合区域客观评价的图像融合[J].吉林大学学报(工学版),2014(6):1849-1859.
[8] 范艳玲;杨明.基于双树复小波变换的多聚焦图像融合[J].核电子学与探测技术,2014(2):204-207,221.
[9] Lin CJ.Projected gradient methods for nonnegative matrix factorization[J].Neural computation,200710(10):2756-2779.
[10] Kim, H;Park, H.NONNEGATIVE MATRIX FACTORIZATION BASED ON ALTERNATING NONNEGATIVITY CONSTRAINED LEAST SQUARES AND ACTIVE SET METHOD[J].SIAM Journal on Matrix Analysis and Applications,20092(2):713-730.
[11] Kim, J.;Park, H..Fast nonnegative matrix factorization: An active-set-like method and comparisons[J].SIAM Journal on Scientific Computing,20115/6(5/6):3261-3281.
[12] 陈广秋;高印寒;才华;刘广文;段云鹏.局部化NSST与PCNN相结合的图像融合[J].液晶与显示,2015(4):701-712.
[13] 王宇庆;王索建.红外与可见光融合图像的质量评价[J].中国光学,2014(3):396-401.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%