欢迎登录材料期刊网

材料期刊网

高级检索

综述了制备金属钛的几种方法,如镁还原法,钙还原法,钠还原法,熔盐电解法等,着重介绍了在这几种方法基础上发展而来的新工艺、新方法,其中包括直接化学还原TiO2的FFC剑桥工艺、导电介入还原法(EMR)、机械化学法(MCP)、预成型还原法(PRP),在分析各种方法的生产原理、特点以及其发展前途的基础上, 发现以TiCl4为原料的钛的生产工艺,在降低成本和某些杂质(如Cl)含量的问题上普遍存在困难.未来钛冶金的发展方向是用还原二氧化钛为基础的连续式生产技术代替间歇式的Kroll法生产技术,并大力降低原材料和生产的成本.

参考文献

[1] 莫畏;邓国珠;罗方承.钛冶金[M].北京:冶金工业出版社,1998:443.
[2] 王志,袁章福,郭占成.金属钛生产工艺研究进展[J].过程工程学报,2004(01):90-96.
[3] Steven J. Gerdemann .TITANIUM Process Technologies[J].Advanced Materials & Processes,2001(7):41-43.
[4] 郭胜惠,彭金辉,张世敏,范兴祥,张利波.熔盐电解还原TiO2制取海绵钛新技术研究[J].昆明理工大学学报(理工版),2004(04):50-52.
[5] Chen G Z;Fray D J;Farthing T W .Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J].NATURE,2000,407:361.
[6] 刘美凤,郭占成.金属钛制备方法的新进展[J].中国有色金属学报,2003(05):1238-1245.
[7] Froes;Eranezhuth B G;Fores F H;Senkov O N .Reduction of metal oxides through mechanochemical processing[P].US 6152982,2000-11-28.
[8] Derek J. Fray .Emerging molten salt technologies for metals production[J].JOM,2001(10):26-31.
[9] George Z. Chen;Derek J. Fray .Voltammetric Studies of the Oxygen-Titanium Binary System in Molten Calcium Chloride[J].Journal of the Electrochemical Society,2002(11):E455-E467.
[10] Okabe T H;Oda T;Mitsuda Y .Titanium powder production by preform reduction process(PRP)[J].Journal of Materials Research,2004,364:156.
[11] Froes FH;Trindade B .The mechanochemical processing of aerospace metals[J].Journal of Materials Science,2004(16/17):5019-5022.
[12] Froes et al.Reduction of metal oxides through mechanochemical processing[P].US 6152982,2000-11-28.
[13] Froes F H;Eranezhuth B G;Prisbrey K .Mechanochemical processing for metals and metal alloys[P].US 6231636,2001-5-15.
[14] 王碧侠,兰新哲,赵西成,吴晓松.二氧化钛直接还原制取金属钛的工艺进展[J].稀有金属,2006(05):671-677.
[15] 刘美凤,郭占成,卢维昌.TiO2直接电解还原过程的研究[J].中国有色金属学报,2004(10):1752-1758.
[16] 聂新苗,董凌燕,白晨光,陈登福,邱贵宝.TiO2电解制取Ti的热力学研究[J].材料导报,2006(10):147-150.
[17] 黄金昌.低成本钛粉末产品的生产、性能和应用[J].稀有金属与硬质合金,2001(04):45-48.
[18] 金红.低成本金属钛生产方法的研究与开发[J].稀有金属,2000(04):296-300.
[19] 郭胜惠,彭金辉,张世敏,范兴祥,张利波.熔盐电解法生产海绵钛的回顾和新技术开发[J].轻金属,2002(11):51-53.
[20] Froes F H.低成本钛粉的生产[J].轻金属,1999(06):46.
[21] Okabe T H;Waseda Y .Producing titanium through an electronically mediated reaction[J].Journal of Metals,1997,49(06):28.
[22] Okabe TH.;Sadoway DR. .Metallothermic reduction as an electronically mediated reaction[J].Journal of Materials Research,1998(12):3372-3377.
[23] Uda T;Okabe T H;Waseda Y .Titanium power production by halidothermic reduction[J].Journal of the Japan Institute of Metals,1998,62:796.
[24] Uda T;Okabe T H;Jacob K T;Waseda Y .Phase equilibria and thermodynamics of the system Dy-Mg-Cl at 1073 K[J].Journal of Alloys and Compounds,1999,284(1-2):282.
[25] 葛鹏.钛的生产技术[J].稀有金属快报,2002(05):1-4.
[26] Kraft E H .Opportunities for low cost titanium in reduced fuel consumption,improved emissions,and enhanced durability heavy-duty vehicles[R].Washington:EHK Technologies,2002.
[27] Chen G Z;Fray D J;Farthing T W .Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride[J].Metall & Mat Trans B,2001,32B:1041.
[28] Fray D J;Farthing T W;Chen G Z .Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt[P].WO 9964638,1999-12-16.
[29] Okabe T H;Oishi T;Ono K .Preparation and characterization of extra-low-oxygen titanium[J].Journal of Alloys and Compounds,1992,184(01):43.
[30] Okabe T H;Suzuki R O;Oishi T;Ono K .Thermodynamic properties of dilute titanium-oxygen solid solution in beta phase[J].MATERIALS TRANSACTIONS,1991,32(05):485.
[31] Okabe T H;Nakamura M;Oishi T;Ono K .Electrochemical deoxidation of titanium[J].Metallurgical and Materials Transactions B:Process Metallurgy and Materials Processing Science,1993,24B:449.
[32] Derek J. Fray .Emerging molten salt technologies for metals production[J].JOM,2001(10):26-31.
[33] 许原,白晨光,陈登福,邱贵宝,温良英.海绵钛生产工艺研究进展[J].重庆大学学报(自然科学版),2003(07):97-100.
[34] 彭金辉,范兴祥,郭胜惠,张利波,张世敏.二氧化钛直接电解提取钛短流程绿色新技术[J].稀有金属,2002(04):290-293.
[35] 洪艳;沈化森;王兆林;曲涛 .低成本钛粉生产工艺[J].中国有色金属学报,2005,15(02):343.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%