欢迎登录材料期刊网

材料期刊网

高级检索

综述了原位Cu基复合材料的特点和研究进展,介绍了该复合材料的最新制备工艺,对微观结构和机械性能进行了分析,并简要讨论了其发展趋势.

参考文献

[1] Tjong S C;Ma Z Y .Microstructural and mechanical character-istics of in situ metal matrix composites[J].Materials Science and Engineering,2000,29:49.
[2] Bevk J;Harhison J P;Bell J L .Anomalous increase in strength of in situ formed Cu-Nb multifilamentary composites[J].Journal of Applied Psychology,1978,49:6031.
[3] Verboeven J D;Chueh S C;Gibson E D .Strength and conduc-tivity of in situ Cu-Fe alloy[J].Journal of Mater,1989,24:1748.
[4] Renaud C V;Wong J;Gregory E .Development and application of high strength,high conductivity CuNb in situ composite wire and strip[J].Advances in Cryogenic Engineering,1988,34:435.
[5] Kozlenkova N.I.;Pantsyrnyi V.I. .Electrical conductivity of high-strength Cu-Nb microcomposites[J].IEEE Transactions on Magnetics,1996(4):2921-2924.
[6] Verboeven J D;Chumbley L S;Laabs F C et al.Measurement of filament spacing in deformation processed Cu-Nb alloys[J].Acta Metallurgica Et Materialia,1991,39:2825.
[7] Krotz P D;Spitzig W A;Laaba F C .High temperature proper-ties of heavily deformed Cu-20% Nb and Cu-20% Ta composites[J].Materials Science and Engineering,1989,110A:37.
[8] Liu C D;Bassim M N .Dislocation structure evolution in torsion ofp ure copper[J].Metallurgical & Materials Transactions A:Physical Metallurgy & Materials Science,1992,24A:361.
[9] Sakai Y;Inoue K;Maeda H .New high-strength,high-couduc-tivity Cu-Ag alloy sheets[J].Acta Metallurgica Et Materialia,1995,43:1517.
[10] Terekhov G I;AIeksandrova L N .Copper-niobium phase dia-gram[J].Metally,1984,4:210.
[11] Sohn K Y .[D].Department for Materials Science and Engineering,University of Florida GainesviIle,U.S.A,1997.
[12] Spitzig W A;Krota P D .Comparison of the strengths and mi-crestructures of Cu-20% Ta and Cu-20% Nb in situ composites[J].Acta Metallurgica Et Materialia,1988,36:1709.
[13] Hong S.I.;Hill M.A. .Strength and Ductility of Heavily Drawn Bundled Cu-Nb Filamentary Microcomposite Wires with Various Nb Contents[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,2000(10):2457-2462.
[14] Tu J P;Wang N Y;Yang Y Z et al.Preparation and proper-ties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing[J].Materials Letters,2002,52:448.
[15] 闵光辉;宋立;于化顺.原位反应铜基复合材料制备工艺[J].材料导报,1997(11):68.
[16] Kim J H;Yun J H;Park Y H.Manufacturing of Cu-TiB2composites by turbulent in situ mixing procoss[J].Materials Science and Engineering A,2006
[17] 毕晓勤,李金山,耿兴国,胡锐,陈忠伟,李晓历,傅恒志.定向凝固Cu-Cr自生复合材料显微组织和力学、电学性能研究[J].材料科学与工程学报,2004(04):498-501.
[18] 库兹W;萨姆P R.定向凝固共晶材料[M].北京:冶金工业出版社,1989:21.
[19] Wen H Q;Zou Q M .Directional solidification of Cu-Cr alloy[J].Rare Metals,1998,17:104.
[20] Wen H Q .The microstrueture study on the directional solidified Cu-Cr alloys with high strength and conductivity[J].Foundry Equipment Research,1997,4:39.
[21] 葛继平 .形变铜基原位复合材料的研究进展[J].功能材料,1999,30:129.
[22] Spitzig W A;Downing H L;Laahs F C et al.Strength and electrical conductivity of a deformation-processed Cu-5 Pct Nb Composite[J].Metallurgical and Materials Transactions,1993,24A:7.
[23] Spitzig W A .Strengthening in heavily deformation processed Cu-20%Nb[J].Acta Metallurgica Et Materialia,1991,39:1085.
[24] Spitzig W A;Pelton A R;Laabs F C .Characterization of the strength and microstructure of heavily cold worked Cu-Nb compos-ites[J].Acta Metallurgica Et Materialia,1987,35:2427.
[25] Biselli C;Morris D G .Microstructuro and strength of Cu-Fe in situ composite obtained from prealloyed Cu-Fe powders[J].Acta Metallurgica Et Materialia,1994,42:163.
[26] Biselli C;Morris D G .Microstructure and strength of Cu-Fe in situ composites after very high drawing strains[J].Acta Metallurgica Et Materialia,1996,44:493.
[27] erman G A;Anderson I E;Verhoeven J D .Strength and electrical conductivity of deformation Pct Fe alloys produced by power metallugy techniques[J].Metallurgical and Materials Transactions,1993,24A:35.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%