欢迎登录材料期刊网

材料期刊网

高级检索

用磁控共溅射法制备Cu-W合金薄膜,运用EDX,XRD,TEM,SEM和纳米压痕仪对薄膜成分、结构和力学性能及其关系进行了研究.结果表明,含W较低的Cu_(82.1)W_(17.9)(%,原子分数)和W浓度较高的Cu_(39.8)W_(60.2)薄膜为晶态结构且出现固溶度扩展,分别存在fcc Cu(W)亚稳过饱和固溶体(固溶度4.8%W)和bcc W(Cu)亚稳过饱和固溶体(固溶度5.7%Cu),W含量为31.8%,45.7%,54.8%的Cu-W薄膜呈非晶态,表面粗糙度较晶态Cu-W薄膜低.总体上非晶Cu-W薄膜弹性模量E和硬度H值较低,fcc Cu-W膜实测E值介于Voigt和Reuss规则预测值之间,bcc和非晶Cu-W膜实测E值分别高于和低于预测值;晶态Cu-W膜实测H值与Voigt规则计算值的符合性优于非晶膜,薄膜结构对力学性能预测可靠性影响较大.

The composition,structure,mechanical properties of Cu-W alloy thin films fabricated by magnetron co-sputtering were investigated by EDX,XRD,TEM,SEM and nanoindenter.The results showed that Cu_(82.1)W_(17.9)(%,atom fraction)with lower W content and Cu_(39.8)W_(60.2) with higher W concentration thin films were of crystalline state with the presence of fcc Cu(W)metastable supersaturated solid solution with maximum W solubility of 4.8%and bcc W(Cu)metastable supersaturated solid solution with maximum Cu solubility of 5.7%,respectively.Cu-W thin films with W of 31.8%,45.7%,54.8%were amorphous and exhibited lower surface roughness than crystalline Cu-W thin films.Generally,the values of hardness H and elastic modulus E of amorphous Cu-W thin films were lower than their crystalline counterparts.The measured E value of fcc Cu-W films ranged in values predicted by Voigt and Reuss rule,for bcc and amorphous Cu-W films the measured E values were higher and lower than the predicted Values respectively.The compliance of measured H values of crystalline Cu-W films and values calculated by Voigt rule Was better than amorphous Cu-W films.The estimation credibility of mechanical properties by rule-of-mixture was significantly influenced by the structure of Cu-W thin films.

参考文献

[1] 夏扬,宋月清,崔舜,林晨光,韩胜利.Mo-Cu和W-Cu合金的制备及性能特点[J].稀有金属,2008(02):240-244.
[2] Wang C.;Brault P.;Zaepffel C.;Thiault J.;Pineau A.;Sauvage T. .Deposition and structure of W-Cu multilayer coatings by magnetron sputtering[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,2003(21):2709-2713.
[3] Chu J P;Lin C H;Heieh Y Y .Thermal performance of sputtered insoluble Cu(W)films for advanced barriedess metallization[J].Journal of Electronic Materials,2006,35(01):76.
[4] Radic N.;Stubicar M. .Microhardness properties of Cu-W amorphous thin films[J].Journal of Materials Science,1998(13):3401-3405.
[5] 汪渊,李晓华,宋忠孝,徐可为,尉秀英.退火Cu-W薄膜组织结构与残余应力[J].稀有金属材料与工程,2007(03):435-439.
[6] Mahalingam T;Lin CH;Wang LT;Chu JP .Preparation and characterization of sputtered Cu films containing insoluble Nb[J].Materials Chemistry and Physics,2006(2/3):490-495.
[7] Smita Gohil;Rajarshi Banerjee;Sancta Bose;Pushan Ayyub .Influence of synthesis conditions on the nanestructure of immiscible copper-silver thin films[J].Scripta Materialia,2008,58:843.
[8] Castelnau O;Geandier G;Renault PO;Goudeau P;Le Bourhis E .Characterization and modelling of the elastic properties of nano-structured W/Cu multilayers[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,2007(2/4):320-324.
[9] 王德宝,吴玉程,王文芳,宗跃.机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究[J].稀有金属,2008(01):17-22.
[10] 潘金生;仝健民;田民波.材料科学基础[M].北京:清华大学出版社,1998:91.
[11] Saunders N;Miodownik A P .Phase formation in co-deposited metallic alloy thin films[J].Journal of Materials Science,1987,22:629.
[12] Cantor B;Cahn R W .Metastable alloy phases by Co-sputtering[J].Acta Metallurgica,1976,24:845.
[13] Chu JP.;Lin CH.;Lin TN.;Wang SF.;Liu CJ. .Characterizations of super hard Cu films containing insoluble W prepared by sputter deposition[J].Materials Chemistry and Physics,2001(2):286-289.
[14] Rizzo H F;Massalski T B;Nastasi M .Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition[J].Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1993,24(05):1027.
[15] Lam N Q;Okamoto P R .A unified approach to solid-state amorphization and melting[J].Materials Research Bulletin,1994,19:41.
[16] H.S.Kim;Y.Estrin .Plastic deformation behaviour of fine-grained materials[J].Acta materialia,2000(2):493-504.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%